

Industrial Micro SSD Specification (MLC) V2.0

Micro SSD Overview

- Capacity
 - 15nm: 8GB to 128GB
- SATA Interface
 - SATA 1.5Gbps, 3Gbps, and 6Gbps interface
- Flash Interface
 - Flash Type: MLC
- Performance
 - Read: up to 560MB/s
 - Write: up to 465MB/s
- Power ConsumptionNote1
 - **■** *Active mode:* ≤1,600mW
 - Idle mode: ≦316mW

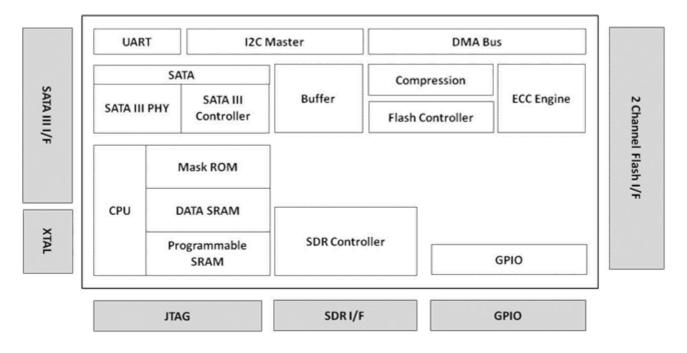
- TBW (Terabyte Written)Note2
 - 87 TBW for 128GB
- MTBF
 - More than 2,000,000 hours
- Minimum Average Program/Erase cycle
 - MLC: 3,000 cycles
- Advanced Flash Management
 - Static and Dynamic Wear Leveling
 - Bad Block Management
 - TRIM
 - SMART
 - NCQ
 - Over-Provision
 - Firmware Update
 - SMARTZIPTM
- Low Power Management
 - DIPM/HIPM Mode
- Storage Temperature Rang
 - -40°C~85°
- Operation Temperature Range
 - Industrial Grade: -40°C to 85°C
- RoHS compliant

Performance and Power Consumption

		Perform	nance	Power Consumption	
Capacity	Flash Structure	CrystalDi	skMark	Read	Write
Capacity	riasii structure	Read (MB/s)	Write (MB/s)	(mW)	(mW)
8GB	8GBx1,TSB 15nm	300	100	830	820
16GB	8GBx2,TSB 15nm	550	200	1050	1000
1006	16GBx1,TSB 15nm	320	80	850	800
32GB	16GBx2,TSB 15nm	550	155	990	990
64GB	16GBx4,TSB 15nm	550	345	1050	1500
128GB	16GBx8,TSB 15nm	560	465	1000	1600

NOTE:

For more details on Power Consumption, please refer to Chapter 4.2



1. INTRODUCTION

1.1. General Description

Axeme's micro SSD delivers all the advantages of Flash Disk technology with the Serial ATA I/II/III interface in an embedded BGA form factor. Axeme micro SSD have a small physical size and can offer wide range application for industrial grade. Its capacity could provide a wide range from 8GB to 128GB with 15nm MLC. Moreover, it can reach up to 560MB/s read as well as 465MB/s write high performance, and lower power consumption makes it an ideal storage choice for high performance demanding mobile and customized devices.

1.2. Controller Block Diagram

HDA2xG22211I Controller Block Diagram

1.3. Flash Management

1.3.1. Error Correction Code (ECC)

Flash memory cells will deteriorate with use, which might generate random bit errors in the stored data. Thus, this micro SSD applies the LDPC (Low Density Parity Check) of ECC Algorithm, which can detect and correct errors occur during Read process, ensure data been read correctly, as well as protect data from corruption.

1.3.2. Wear Leveling

NAND Flash devices can only undergo a limited number of program/erase cycles, and in most cases, the flash media are not used evenly. If some area get updated more frequently than others, the lifetime of the device would be reduced significantly. Thus, Wear Leveling technique is applied to extend the lifespan of NAND Flash by evenly distributing write and erase cycles across the media.

Axeme provides advanced Wear Leveling algorithm, which can efficiently spread out the flash usage through the whole flash media area. Moreover, by implementing both dynamic and static Wear Leveling algorithms, the life expectancy of the NAND Flash is greatly improved.

1.3.3. Bad Block Management

Bad blocks are blocks that include one or more invalid bits, and their reliability is not guaranteed. Blocks that are identified and marked as bad by the manufacturer are referred to as "Initial Bad Blocks". Bad blocks that are developed during the lifespan of the flash are named "Later Bad Blocks". Axeme implements an efficient bad block management algorithm to detect the factory-produced bad blocks and manages any bad blocks that appear with use. This practice further prevents data being stored into bad blocks and improves the data reliability.

1.3.4. TRIM

TRIM is a feature which helps improve the read/write performance and speed of solid-state drives (SSD). Unlike hard disk drives (HDD), SSDs are not able to overwrite existing data, so the available space gradually becomes smaller with each use. With the TRIM command, the operating system can inform the SSD which blocks of data are no longer in use and can be removed permanently. Thus, the SSD will perform the erase action, which prevents unused data from occupying blocks all the time.

1.3.5. SMART

SMART, an acronym for Self-Monitoring, Analysis and Reporting Technology, is an open standard that allows a hard disk drive to automatically detect its health and report potential failures. When a failure is recorded by SMART, users can choose to replace the drive to prevent unexpected outage or data loss. Moreover, SMART can inform users of impending failures while there is still time to perform proactive actions, such as copy data to another device.

1.3.6. Over-Provision

Over Provisioning refers to the inclusion of extra NAND capacity in a SSD, which is not visible and cannot be used by users. With Over Provisioning, the performance and IOPS (Input / Output Operations per Second) is improved by providing the controller additional space to manage P/E cycles, which enhances the reliability and endurance as well. Moreover, the write amplification of the SSD becomes lower when the controller writes data to the flash.

1.3.7. Firmware Upgrade

Firmware can be considered as a set of instructions on how the device communicates with the host. Firmware will be upgraded when new features are added, compatibility issues are fixed, or read/write performance gets improved.

1.4. Low Power Management

1.4.1. DEVSLP Mode(Optional)

With the increasing need of aggressive power/battery life, SATA interfaces include a new feature, Device Sleep (DEVSLP) mode, which helps further reduce the power consumption of the device. DEVSLP enables the device to completely power down the device PHY and other sub-systems, making the device reach a new level of lower power operation. The DEVSLP does not specify the exact power level a device can achieve in the DEVSLP mode, but the power usage can be dropped down to 2mW or less.

1.4.2. DIPM/HIPMMode

SATA interfaces contain two low power management states for power saving: Partial and Slumber modes. For Partial mode, the device has to resume to full operation within 10 microseconds, whereas the device will spend 10 milliseconds to become fully operational in the Slumber mode. SATA interfaces allow low power modes to be initiated by Host (HIPM, Host Initiated Power Management) or Device (DIPM, Device Initiated Power Management). As for HIPM, Partial or Slumber mode can be invoked directly by the software. For DIPM, the device will send requests to enter Partial or Slumber mode.

1.5. Flushing Mechanism for Power Loss Protection

Power Loss Protection is a mechanism to prevent data loss during unexpected power failure. DRAM is a volatile memory and frequently used as temporary cache or buffer between the controller and the NAND flash to improve the SSD performance. However, one major concern of the DRAM is that it is not able to keep data during power failure. For this device, SDR performs as a cache, and its sizes include 32MB. Only when the data is fully committed to the NAND flash will the controller send acknowledgement (ACK) to the host. Such implementation can prevent false-positive performance and the risk of power cycling issues.

Additionally, it is critical for a controller to shorten the time the in-flight data stays in the cache. Thus, Axeme's device applies an algorithm to reduce the amount of data resides in the cache to provide a better performance. This Smart Cache Flush technology allows incoming data to only have a "pit stop" in the cache and then move to the NAND flash at once. If the flash is jammed due to particular file sizes (such as random 4Kdata), the cache will be treated as an "organizer", consolidating incoming data into groups before written into the flash to improve write amplification.

1.6. Advanced Self-Defense Mechanism

1.6.1. Secure Erase

Secure Erase is a standard ATA command and will write all "0x00" to fully wipe all the data on hard drives and SSDs. When this command is issued, the SSD controller will empty its storage blocks and return to its factory default settings.

1.6.2. Write Protect

When a SSD contains too many bad blocks and data are continuously written in, then the SSD might not be used anymore. Thus, Write Protect is a mechanism to prevent data from being written in and protect the accuracy of data that are already stored in the SSD.

1.7. SSD Lifetime Management

1.7.1. Terabytes Written (TBW)

TBW (Terabytes Written) is a measurement of SSDs' expected lifespan, which represents the amount of data written to the device. To calculate the TBW of a SSD, the following equation is applied:

TBW = [(NAND Endurance) x (SSD Capacity) / WAF

<u>NAND Endurance</u>: NAND endurance refers to the P/E (Program/Erase) cycle of a NAND flash. Typically, the P/E cycle of MLC is 3K.

<u>SSD Capacity</u>: The SSD capacity is the specific capacity in total of a SSD.

<u>WLE</u>: Wear Leveling Efficiency (WLE) represents the ratio of the average amount of erases on all the blocks to the erases on any block at maximum.

<u>WAF</u>: Write Amplification Factor (WAF) is a numerical value representing the ratio between the amount of data that a SSD controller needs to write and the amount of data that the host's flash controller writes. A better WAF, which is near 1, guarantees better endurance and lower frequency of data written to flash memory.

1.8. Adaptive Performance Tuning Technology

1.8.1. Throughput

Based on the available space of the disk, device will regulate the read/write speed and manage the performance of throughput. When there still remains a lot of space, the firmware will continuously perform read/write action. There is still no need to implement garbage collection to allocate and release memory, which will accelerate the read/write processing to improve the performance. Contrarily, when the space is going to be used up, device will slow down the read/write processing, and implement garbage collection to release memory. Hence, read/write performance will become slower.

1.8.2. Predict Fetch

Normally, when the Host tries to read data from the SSD, the SSD will only perform one read action after receiving one command. However, device applies Predict Fetch to improve the read speed. When the Host issues sequential read commands to the SSD, the SSD will automatically release that the following will also be read commands. Thus, before receiving the next command, flash has already prepared the data. Accordingly, this accelerates the data processing time, and the host does not need to wait so long to receive data.

1.8.3. 1.8.3. SmartZIP[™]

Write data to the NAND Flash costs time. To improve the write speed performance, this device launches with compression technique-- SmartZIP

Whether a file could be compressed or not depending on the file type, for file types have redundancy data pattern, through our embedded encode engine, we could reduce the amount of data that is actually written to the Flash. Comparing to the SSD without the compression, write efficiency is raised and the SSD endurance is also improved since Flash could be benefit from less data written for a longer SSD lifetime.

2. PRODUCT SPECIFICATIONS

Capacity

■ From 8GB up to 128GB (support 48-bit addressing mode)

• Electrical/Physical Interface

- SATA Interface
 - Compatible with SATA 1.5Gbps, 3Gbps and 6Gbps interface
 - AC coupling for transmitter and receiver
 - Self-calibrated and embedded termination resistor at transmitter
 - Support power management
 - Support expanded register for SATA protocol 48-bit addressing mode

Flash

■ 15nm MLC, Toggle

• ECC Scheme

■ Micro SSD applies the LDPC (Low Density Parity Check) of ECC algorithm.

Operation Voltage Supply

- 3.3V±5%
- 1.8V±5%

• Power Saving Implementation

- Idle mode
- Partial mode
- Slumber mode
- Built-in 32-Bit Microcontroller (Core)
- UART function
- Implement Voltage Detector
- GPIO
- Support SMART and TRIM commands

Performance

Capacity	Flash Structure	Sequential		
Capacity	i iasii Structure	Read	Write	
8GB	8GB x 1, TSB 15nm	300	100	
16GB	8GB x 2, TSB 15nm	550	200	
	16GB x 1, TSB 15nm	320	80	
32GB	16GB x 2, TSB 15nm	550	155	
64GB	16GB x 4, TSB 15nm	550	345	
128GB	16GB x 8, TSB 15nm	560	465	

NOTES:

- 1. The performance was measured using CrystalDiskMark v5.0x64 with SATA 3Gbps host.
- 2. Samples are made of 15nm MLC NAND Flash.
- 3. Performance may vary from flash configuration, SDR configuration, and platform.
- 4. The table above is for your reference only.

• TBW (Terabytes Written)

Capacity	Capacity Flash Structure	
8GB	8GB x 1, TSB 15nm	3
16GB	8GB x 2, TSB 15nm	6
	16GB x 1, TSB 15nm	
32GB	16GB x 2, TSB 15nm	13
64GB	16GB x 4, TSB 15nm	30
128GB	16GB x 8, TSB 15nm	87

NOTES:

- 1. Samples are made of 15nm NAND Flash.
- 2. TBW may vary from flash configuration, SDR configuration, and platform. The endurance of SSD could be estimated based on user behavior, NAND endurance cycles, and write amplification factor. It is not guaranteed by flash vendor.

3. ENVIRONMENTAL SPECIFICATIONS

3.1. Environmental Conditions

Temperature and Humidity

Temperature:

Storage: -40°C to 85°C

Operation (Industrial Diamond grade): -40°C to 85°C

Humidity:

♦ RH 95% under 55°C (in operation)

Table 3-1 High Temperature Test Condition

	Temperature	Humidity	Test Time
Operation	85°C	0% RH	72 hours
Storage	85°C	0% RH	168 hours

Test Reference: IEC 60068-2-2

Result: No any abnormality is detected.

Table 3-2 Low Temperature Test Condition

	Temperature	Humidity	Test Time
Operation	-40°C	0% RH	72 hours
Storage	-40°C	0% RH	168 hours

Test Reference: IEC 60068-2-1

Result: No any abnormality is detected.

Table 3-3 High Humidity Test Condition

	Temperature	Humidity	Test Time
Operation	55°C	95% RH	72 hours
Storage	55°C	95% RH	96 hours

Test Reference: IEC 60068-2-3

Result: No any abnormality is detected.

Table 3-4 Temperature Cycle Test

	Temperature	Test Time	Cycle
Operation	-40°C	30 min.	20 Cycle
Operation	85°C	30 min.	20 Cycle
Ctorogo	-40°C	30 min.	50 Cycle
Storage	85°C	30 min.	50 Cycle

Test Reference: IEC 60068-2-14

Result: No any abnormality is detected.

Electrostatic Discharge (ESD)

Table 3-5 micro SSD Contact ESD Specification

Device	Capacity	Temperature	Relative Humidity	+/- 4KV	Result
	8GB			Device functions	
	16GB			are affected, but	
Micro SSD	32GB	23.0°C	49% (RH)	EUT will be back to	PASS
	64GB			its normal or operational state	
	128GB			automatically.	

Test Reference: IEC 61000-4-2

EMI Compliance

FCC: CISPR22CE: EN55022BSMI 13438

3.2. Package Qualification

High Temperature Storage Life Test (HTSL)

Parameter	Test Condition		
Storage	Temperature	Test Duration	
	150°C	168/1000 hours	

Test Reference: JESD22 A103 **Result:** No any abnormality is detected.

Solderability Test

Parameter	Test Condition
Storage	85°C/85% RH 16 hours, bake 1 hour at 125°C. Molten solder temperature: 245+5°C Dwell time: 5 seconds

Note: Spec: > 95% of coating area, pinhole, voids, do not exceed 5% of total area.

Result: Pass.

Pre-condition Test

Parameter	Test Method	Test Condition
Storage	JEDS 22-A113	1. Temperature Cycle (-65°C/150°C, 5 cycles) 2. Baking (125°C, 24 hours) 3. Temp & Humidity Soaking (30°C/60% RH, 192 hours) 4. IR Reflow 3 cycles

Note: The parts passing this test will be used to do HAST and TCT.

Results: Pass

High Acceleration Stress Test (HAST/unbias)

Parameter	Test Method	Test Condition		
Storage	JEDS 22-A110	Ambient Temperature	Ambient Humidity	Test Duration
Storage	JEDS 22 A110	130°C	85% (RH)	Test Duration 96 hours

Result: Pass

Temperature Cycling Test (TCT)

Parameter	Test Method	Test Condition				
Storage	JEDS 22-A104	High Temperature	Low Temperature	Test Duration		
Storage	JLD3 22-A104	150°C	-65°C	200/500 cycles		

Result: Pass

X-rayTest

Parameter	Test Method	Test Condition			
Storage	ISO7816-1	Sample	Test Times	Result	
Storage	1507010 1	8GB 10pcs	20	Function Pass	

Result: No any abnormality is detected.

3.3. MTBF

MTBF, an acronym for Mean Time Between Failures, is a measure of a device's reliability. Its value represents the average time between a repair and the next failure. The measure is typically in units of hours. The higher the MTBF value, the higher the reliability of the device. The predicted result of Axeme's micro SSD is more than 2,000,000 hours.

3.4. Certification & Compliance

- RoHs
- SATA Ⅲ (SATA Rev. 3.2)
- Up to ATA/ATAPI-8 (Including S.M.A.R.T)

4. ELECTRICAL SPECIFICATIONS

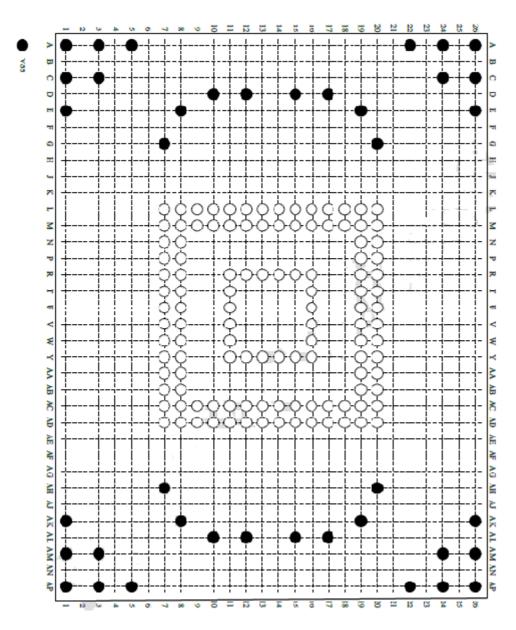
4.1. Supply Voltage

Parameter	Rating
VCC	3.3V
VCCQ	1.8V

4.2. Power Consumption

Current	Flash Structure	Read	Write	Partial	Slumber	Idle
8GB	8GB x 1	830	820	18	12	315
16GB	8GB x 2	1050	1000	19	13	316
1005	16GB x 1	850	800	15	10	265
32GB	16GB x 2	990	990	20	15	270
64GB	16GB x 4	1050	1500	18	12	280
128GB	16GB x 8	1000	1600	18	12	280

Unit: mW


NOTES:

- 1. The average value of power consumption is achieved based on 100% conversion efficiency.
- 2. The measured power voltage includes 1.8V and 3.3V.
- ${\bf 3.\ Samples\ were\ built\ using\ 15nm\ MLC\ NAND\ Flash\ and\ measured\ under\ normal\ temperature.}$
- 4. Sequential R/W is measured while testing 4000MB sequential R/W 5 times by Cyrstal Disk Mark. DEVSLP is measured while entering device sleep mode for 5 minutes.
- 5. Power Consumption may differ according to flash configuration and platform.

5. INTERFACE

5.1. Pin Assignment and Descriptions

HDA2xG22211I micro SSDPin Assignment (Top View)

	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
L	\circ	\bigcirc	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	L
	VSS	VSS	XTAL_OUT	NC	VSS	vcc	NC	NC	NC	NC	NC	NC	vss	vss	
М	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	М
	vss	NC	PWR_RESETN	XTAL_IN	VCC	XTXD	DAS	NC	NC	NC	NC	NC	vss	vss	
N	\circ	\circ											\circ	\circ	N
	SATA_VSS	vss											vss	NC	
Р	\circ	\circ											\circ	\circ	P
	SATA_RX_P	SATA_VDD								_			vss	vss	
R	\circ	\circ			\circ	\circ	\circ	\circ	\circ	\circ			\circ	0	R
	SATA_RX_N	SATA_VDD			VDD	VSS	VCC	VCC	vcc	VCC			vcc	vcc	
Т	\circ	\circ			\circ					\circ			0		7
	SATA_VSS	VSS			VDD					VCC			NC	NC	
U	\circ	\circ			\circ					\circ			0	0	U
	SATA_TX_N	SATA_VCC			VSS					vcc			VSS	VSS	
V	\circ	\circ			\circ					\circ			0		V
	SATA_TX_P	SATA_VCC			vcc					VCCQ			vss	NC	
w	\circ	\circ			\circ					\bigcirc				\circ	w
	SATA_VSS	NC			VDDC	_	_	_		VCCQ			NC	NC	
Y	\circ	\circ			\circ	\circ	\circ	\circ	\circ	0			\circ	\circ	Y
	NC	NC			VDDC	VDDC	VDDC	VSS	vss	vccq			VCC	VCC	
AA	\circ	\circ											\circ	\circ	AA
	NC	NC											VCC	XRTD	
AB	\circ	\circ											\circ	\circ	AB
	vss	NC											NC	NC	
AC	\circ	\circ	\circ	\circ	\circ	\circ	0	0		\circ	\circ	\circ	\circ	\circ	AC
	vss	vcc	DEVSLP	NC	NC	NC	GPIO2	GPI00	NC	NC	NC	NC	NC	VSS	
AD	\circ	\circ	\circ	\circ	0	0	0	0	\circ	\circ	\circ	\circ	\circ	\circ	AD
	vss	vss	GPI06	NC	GPIO3	NC	GPIO1	NC	NC	NC	NC	NC	VSS	VSS	
	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

HDA2xG22211I micro SSD Pin Assignment

Table 5-1 HDA2xG22211I micro SSD Pin Descriptions

Pin Name	BGA 156	Pin Type	PU/PD	Description
UART/GPIO		•		
XTXD	M12	0	PU 75K	UART transmit/receive port
XRXD	AA20	1		
GPIO0	AC14	IO	PD 75K	General purpose input/output pins
GPIO1	AD13			
GPIO2	AC13			
GPIO3	AD11			
GPIO6	AD9			
SATA interface s	ignals		L	
SATA_RX_N	R7	1		Differential Signal Pair A.
SATA_RX_P	P7			SATA Device Receive Signal Differential Pair.
SATA_TX_N	U7	0		Differential Signal Pair B.
SATA_TX_P	V7			SATA Device Transmit Signal Differential Pair.
DAS	M13	0		Device Activity Signal
SATA_VCC	U8,V8			+3.3V
SATA_VSS	N7,T7,W7			Ground
Control Signals				
XTAL_IN	M10	1		Crystal input/outputpin. (30MHz)
XTAL_OUT	L9	0		
PWR_RESETN	M9	ı		Hardware Reset, low active.
Power supply Sig	gnals			
	L12			
	M11			
	R13			
	R14			
	R15			
	R16			
	R19			
VCC	R20			+3.3V
	T16			
	U16			
	V11			
	Y19			
	Y20			
	AA19			
	AC8			
	W11			
VDDC	Y11			±1.1\/\(\(\D\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
VDDC	Y12			+1.1V(DNU)
	Y13			
VCCQ	V16,W16,Y16			+1.8V
	_1			

CND C' I				
GND Signals	D42 144 17 10	I		Ground
	R12,U11,L7,L8			Ground
	M7,L11,L19,			
	L20,M19,M20			
	N19,P19,AC20			
	AD20,AD19			
VSS	AD8,AD7,T8			
	Y14,Y15,U19			
	P20,U20,V19			
	AC7,AB7,N8			
	A1,C1,E1,AK1			
	AM1			
	AP1,A3,C3			Ground
	AM3,AP3,A5			
	AP5,G7,AH7			
	E8,AK8,D10			
	AL10,D12,AL12			
VSS	D15,AL15,D17			
	AL17,E19,AK19			
	G20,AH20,A22			
	AP22,AC24,C24			
	AM24,AP24,A26			
	C26,E26,AK26			
	AM26,AP26			
Other Signals				
DEVSLP	AC9	1	PU 69.8K	DEVICE SLEEP, High active.(Normal is Low)
			& PD 75K	
	P8,R8,L15,L16,L17			
	L18,AA8,AA7			
	AB19,AB20			
	AB8,AC10			
	AC11,AC15			
	AC16,AC17			
	AC18,AC19			
	AD10,AD12			
	AD14,AD15			
NC	AD14,AD13 AD16,AD17			DNU
	AD18,L10			
	M16,M17			
	M8,T19,T20			
	W19,W8,Y7			
	Y8,L13,L14			
	M14,M15,			
	M18,N20,T11			
	V20,W20,AC12,R11			

^{1.} There is an internal Power On Reset at ball #M9 and power on sequence of internal POR is 22ms.

It's an optional function to choose whether POR (M9) is connected to an external capacitance or not.

6. SUPPORTED COMMANDS

6.1. ATA Command List

Op Code	Description	Ор	Op Code		Description	
00h	NOP		C9h		Read DMA without Retry	
06h	Data Set Management		CAh		Write DMA	
10h-1Fh	Recalibrate		CBh		Write DMA without Retry	
20h	Read Sectors		CEh		Write Multiple FUA EXT	
21h	Read Sectors without Retry		E0h		Standby Immediate	
24h	Read Sectors EXT		E1h		Idle Immediate	
25h	Read DMA EXT		E2h		Standby	
27h	Read Native Max Address EXT		E3h		Idle	
29h	Read Multiple EXT		E4h		Read Buffer	
2Fh	Read Log EXT		E5h		Check Power Mode	
30h	Write Sectors		E6h		Sleep	
31h	Write Sectors without Retry		E7h		Flush Cache	
34h	Write Sectors EXT		E8h		Write Buffer	
35h	Write DMA EXT		E9h		READ BUFFER DMA	
37h	Set Native Max Address EXT		EAh		Flush Cache EXT	
38h	CFA WRITE SECTORS WITHOUT ERASE		EBh		Write Buffer DMA	
39h	Write Multiple EXT		ECh		Identify Device	
3Dh	Write DMA FUA EXT		EFh		Set Features	
3Fh	Write Long EXT	EFh	02	2h	Enable volatile write cache	
40h	Read Verify Sectors	EFh	03	3h	Set transfer mode	
41h	Read Verify Sectors without Retry	EFh	05	ōh	Enable the APM feature set	
42h	Read Verify Sectors EXT	EFh	10)h	Enable use of SATA features et	
44h	Zero EXT	EFh	10h	02h	Enable DMA Setup FIS Auto-Activate optimization	
45h	WRITE UNCORRECTABLE EXT	EFh	10h	03h	Enable Device-initiated interface power state (DIPM) transitions	
47h	READ LOG DMA EXT	EFh	10h	06h	Enable Software Settings Preservation (SSP)	
57h	WRITE LOG DMA EXT	EFh	10h	07h	Enable Device Automatic Partial to Slumber transitions	
60h	Read FPDMA Queued	EFh	10h	09h	Enable Device Sleep	
61h	Write FPDMA Queued	EFh	55	5h	Disable read look-ahead	
70h-7Fh	Seek	EFh	66	Sh .	Disable reverting to power-on defaults	

MLC(Industrial) Mirco SSD Datasheet

90	Oh Execute Device Diagnostic E		EFh	8	2h	Disable volatile write cache
	1h	Initialize Device Parameters	EFh		5h	Disable the APM feature set
			EFh			
92	2h	Download Microcode	EFN	90	Jn I	Disable use of SATA feature set
93	3h	DOWNLOAD MICROCODE DMA	EFh	90h	02h	Disable DMA Setup FIS Auto-Activate
						optimization
B)h	SMART	EFh	90h	03h	Disable Device-initiated interface power state
	J11	Siva axi		0011	0011	(DIPM) transitions
B0h	D0h	SMART READ DATA	EFh	90h	06h	Disable Software Settings Preservation (SSP)
D 01	-			001	071	Disable Device Automatic Partial to Slumber
B0h	חוט	SMART READ ATTRIBUTE THRESHOLDS	EFN	90n	U/n	transitions
		SMART ENABLE/DISABILE ATTRIBUTE				
B0h	D2h	AUTOSAVE	EFh	90h	09h	Disable Device Sleep
B0h	D3h	SMART SAVE ATTRIBUTE VALUES	EFh	A	Ah	Enable read look-ahead
B0h	D4h	SMART EXECUTE OFF-LINE IMMEDIATE	EFh	C	Ch	Enable reverting to power-on defaults
B0h	D5h	SMART READ LOG		F1h		Security Set Password
B0h	D6h	SMART WRITE LOG		F2h		Security Unlock
B0h	D8h	SMART ENABLE OPERATIONS		F3h		Security Erase Prepare
B0h	D9h	SMART DISABLE OPERATIONS		F4h		Security Erase Unit
B0h	DAh	SMART RETURN STATUS		F5h		Security Freeze Lock
		SMART ENABLE/DISABILE AUTOMATIC				
B0h	DBh	OFF-LINE		F6h		Security Disable Password
B	1h	DEVICE CONFIGURATION		F8h		Read Native Max Address
B	4h	Sanitize	F9h			Set Max Address
C4	4h	Read Multiple	F9h 01h		1h	SET MAX SET PASSWORD
C:	5h	Write Multiple	F9h	02	2h	SET MAXLOCK
C	6h	Set Multiple Mode	F9h	03	3h	SET MAX UNLOCK
C	8h	Read DMA	F9h	04	4h	SET MAX FREEZE LOCIK

6.2. Identify Device Data

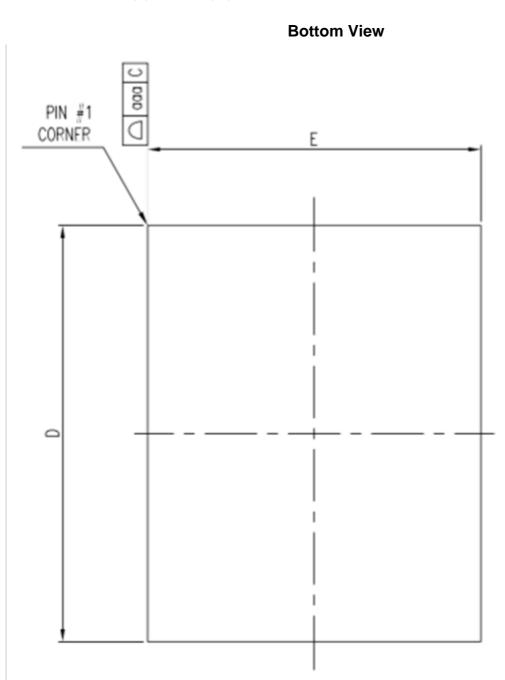
The following table details the sector data returned by the IDENTIFY DEVICE command.

	F: Fixed		
	V: Variable		
Word	X:	Default Value	Description
33 33 31	retired/obsolete		
	/reserved		
0	F	0040h	General configuration bit-significant information
1	X	*1	Obsolete
2	F	C837h	Specific configuration
3	X	0010h	Obsolete
4-5	X	00000000h	Retired
6	Х	003Fh	Obsolete
7-8	X	00000000h	Reserved for assignment by the Compact Flash
			Association
9	X	0000h	Retired
10-19	V	Varies	Serial number (20 ASCII characters)
20-21	X	00000000h	Retired
22	X	0000h	Obsolete
23-26	V	Varies	Firmware revision (8 ASCII characters)
27-46	V	Varies	Model number (xxxxxxxxx)
47	F	8010h	7:0- Maximum number of sectors transferred per
			interrupt on MULTIPLE commands
48	F	4000h	Trusted Computing feature set options(not support)
49	F	2F00h	Capabilities
50	F	4000h	Capabilities
51-52	X	000000000h	Obsolete
53	F	0007h	Words 88 and 70:64 valid
54	Х	*1	Obsolete
55	Х	0010h	Obsolete
56	Х	003Fh	Obsolete
57-58	Х	*2	Obsolete
59	F	5D10h	Sanitize and Number of sectors transferred per
			interrupt on MULTIPLE commands
60-61	V	*3	Maximum number of sector (28bit LBA mode)
62	Х	0000h	Obsolete

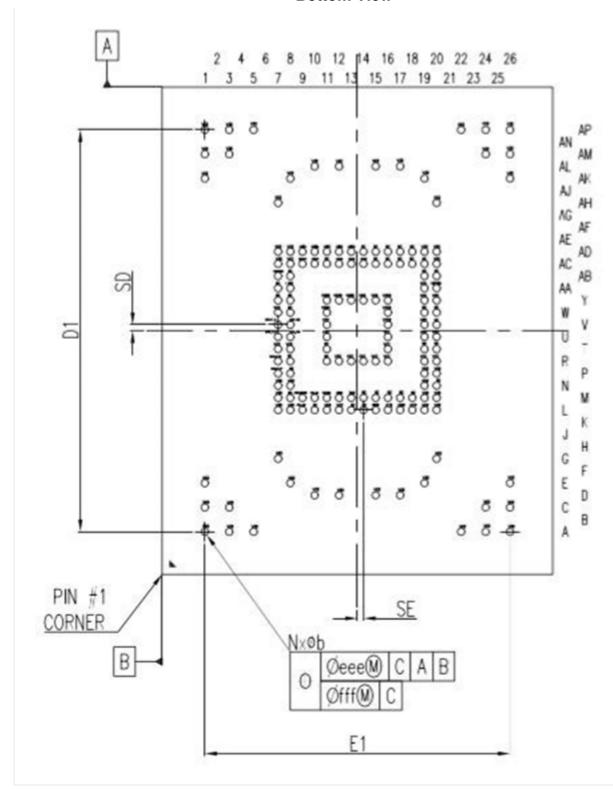
Word	F: Fixed V: Variable X: retired/obsolete /reserved	Default Value	Description
63	F	0407h	Multi-word DMA modes supported/selected
64	F	0003h	PIO modes supported
65	F	0078h	Minimum Multiword DMA transfer cycle time per word
66	F	0078h	Manufacturer's recommended Multiword DMA transfer cycle time
67	F	0078h	Minimum PIO transfer cycle time without flow control
68	F	0078h	Minimum PIO transfer cycle time with IORDY flow control
69	F	1D00h	Additional Supported (support download microcode DMA)
70	Х	0000h	Reserved
71-74	Х	000000000 000000h	Reserved for the IDENTIFY PACKET DEVICE command
75	F	001Fh	Queue depth
76	F	E70Eh	Serial SATA capabilities
77	F	0006h	Serial ATA Additional Capabilities
78	F	0044h	Serial ATA features supported
79	F	0040h	Serial ATA features enabled
80	F	0FF8h	Major Version Number
81	F	0000h	Minor Version Number
82	F	746Bh	Command set supported
83	F	7D09h	Command set supported
84	F	4163h	Command set/feature supported extension
85	F	746Bh	Command set/feature enabled
86	F	BC01h	Command set/feature enabled
87	F	6163h	Command set/feature default
88	F	007Fh	Ultra DMA Modes
89	F	0003h	Time required for security erase unit completion
90	F	001Eh	Time required for Enhanced security erase completion
91	F	0000h	Current advanced power management value
92	F	FFFEh	Master Password Revision Code
93	F	0000h	Hardware reset result. For SATA devices, word 93 shall be set to the value 0000h.

	F: Fixed		
	V: Variable		
Word	X:	Default Value	Description
	retired/obsolete		
	/reserved		
94	Х	0000h	Obsolete
95	F	0000h	Stream Minimum Request Size
96	F	0000h	Streaming Transfer Time – DMA
97	F	0000h	Streaming Access Latency – DMA and PIO
98-99	F	0000h	Streaming Performance Granularity
100-103	V	*4	Maximum user LBA for 48 bit Address feature set
104	F	0000h	Streaming Transfer Time – PIO
105	F	0008h	Maximum number of 512-byte blocks per DATA SET
			MANAGEMENT command
106	F	4000h	Physical sector size/Logical sector size
107	F	0000h	Inter-seek delay for ISO-7779 acoustic testing in
			microseconds
108-111	V	Varies	World Wide Name
112-115	Х	00000000000	Reserved
		0000h	
116	X	0000h	Reserved
117-118	F	00000000h	Words per logical Sector
119	F	401Ch	Supported settings
120	F	401Ch	Command set/Feature Enabled/Supported
121-126	X	0h	Reserved
127	X	0000h	Obsolete
128	F	0021h	Security status
129-140	V	Varies	Vendor specific
141	V	Varies	Vendor specific
142-159	V	Varies	Vendor specific
160	X	000h	Reserved for CFA
161-167	Х	0h	Reserved for CFA
168	V	Varies	Device Nominal Form Factor
169	F	0001h	DATA SET MANAGEMENT command is supported
170-173	F	00000000000	Additional Product Identifier
		0000h	
174-175	Х	00000000h	Reserved
176-205	F	0h	Current media serial number

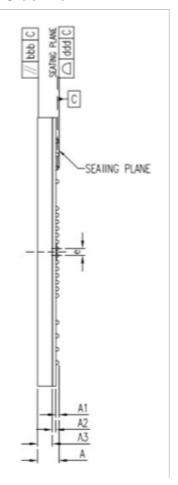
Word	F: Fixed V: Variable X: retired/obsolete /reserved	Default Value	Description	
206	F	000h	SCT Command Transport	
207-208	X	00000000h	Reserved	
209	F	4000h	Alignment of logical blocks within a physical block	
210-211	F	00000000h	Write-Read-Verify Sector Count Mode 3 (not support)	
212-213	F	00000000h	Write-Read-Verify Sector Count Mode 2 (not support)	
214-216	X	0h	Obsolete	
217	F	0001h	Non-rotating media device	
218	Х	000h	Reserved	
219	Х	0000h	NV Cache relate (not support)	
220	V	0000h	Write read verify feature set current mode	
221	Х	0000h	Reserved	
222	F	10FFh	Transport major version number	
223	F	0000h	Transport minor version number	
224-229	Х	0h	Reserved	
230-233	F	000000000000 0000h	Extend number of user addressable sectors	
234	F	0001h	Minimum number of 512-byte data blocks per DOWNLOAD MICROCODE command for mode 03h	
235	F	FFFEh	Maximum number of 512-byte data blocks per DOWNLOAD MICROCODE command for mode 03h	
236-254	Х	0h	Reserved	
255	F	XXA5h XX is variable	Integrity word (Checksum and Signature)	


List of Device Identification for Each Capacity

Capacity	*1	*2	*3	*4
(GB)	(Word 1/Word 54)	(Word 57 – 58)	(Word 60 – 61)	(Word 100 – 103)
8	3CA5h	EEC9B0h	EEC9B0h	EEC9B0h
16	3FFFh	FBFC10h	1DD40B0h	1DD40B0h
32	3FFFh	FBFC10h	3BA2EB0h	3BA2EB0h
64	3FFFh	FBFC10h	7740AB0h	7740AB0h
128	3FFFh	FBFC10h	EE7C2B0h	EE7C2B0h


7. PHYSICAL DIMENSION

Dimension: 16mm(L) x 20mm(W)



Bottom View

Side View

		DIMENSION IN MM		
	SYMBOL	MIN.	NOM.	MAX.
TOTAL THICKNESS	A	1.45	1.57	1.70
STAND OFF	Λ1	0.16	0.21	0.26
SUBSTRATE THIC (NESS	Λ2	0.26		
MOLD THICKNESS	A3	1.10		
BODY SIZE	D	20		
BOD1 2KE	E	16		
BALL DIAMETER		0.30		
BALL OPENING		0.275		
BALL WIDTH	ь	0.25 0.30 0.35		0.35
BALL PITCH	e	0.50		
BALL COUNT	n	156		
EDGE BALL CENTER TO CENTER	D1	16.50 BSC.		
EDGE BALL CEN ER 10 CENTER	E1	12.50 BSC.		
BODY CENTER TO CONTACT BALL	SD	0.25 BSC.		
BOUT CENTER TO CONTACT BALL	SE	0.25 BSC.		
JEDEC(PEF)		MO-276(REF.)		
PACKAGE EDGE TOLEPANCE	000	0.15		
MOLD FLATNESS	bbb	0.20		
COPLANAPITY	ddd	0.08		
BALL OFFSET(PACKAGE)	eee	0.15		
BALL OFFSET(BALL)	fff	0.05		

8. TERMINOLOGY

The following table is to list out the acronyms that have been applied throughout the document.

Term	Definitions		
ATTO	Commercial performance benchmark application		
DEVSLP	Device sleep mode		
DIPM	Device initiated power management		
HIPM	Host initiated power management		
LBA	Logical block addressing		
МВ	Mega-byte		
MTBF	Mean time between failures		
NCQ	Native command queue		
SATA	Serial advanced technology attachment		
SDR	Synchronous dynamic access memory		
S.M.A.R.T.	Self-monitoring, analysis and reporting technology		
SSD	Solid state disk		

9. ORDERING INFORMATION

Part Number	Capacity	Dimension	BGA	Flash Mode	Grade
HDA28G22211I	8GB			1-CH	Industrial (-40°C~ 85°)
HDA2AG22211I	16GB			1-CH/2-CH	Industrial (-40°C~ 85°)
HDA2BG22211I	32GB	16x20x1.7mm	156 Ball	2-CH	Industrial (-40°C~ 85°)
HDA2CG22211I	64GB			2-CH	Industrial (-40°C~ 85°)
HDA2DG22211I	128GB			2-CH	Industrial (-40°C~ 85°)