

8Gb (32Mx8Banksx32) Low Power DDR4 SDRAM

Descriptions

H2AB08G32E6R uses the double data rate architecture on the Command/Address (CA) bus to reduce the number of input pins in the system. Each command uses one clock cycle, during which command information is transferred on both the positive and negative edge of the clock. To achieve high-speed operation, our H2AB08G32E6R • Programmable READ and WRITE latencies (RL/WL) SDRAM adopt 16n-prefetch interface designed to transfer two data per clock cycle at the I/O pins. A single read or write access for the H2AB08G32E6R effectively consists of a single 8n-bit wide, one clock cycle data transfer at the internal SDRAM core and eight corresponding n-bit wide, one-half-clock-cycle data transfer at the I/O pins. Read and write accesses to the H2AB08G32E6R are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence.

For H2AB08G32E6R devices, accesses begin with the registration of an Active command, which is then followed by a Read or Write command. The address and BA bits registered coincident with the Active command are used to select the row and the Bank to be accessed. The address bits registered coincident with the Read or Write command are used to select the Bank and the starting column location for the burst access.

Features

- Frequency to 1600MHz (data rate: 3200Mbps/pin)
- 16n prefetch DDR architecture
- 8 internal banks per channel for concurrent operation
- Single-data-rate CMD/ADR entry
- Bidirectional/differential data strobe per byte lane
- Programmable Burst Lengths: 16,32
- Partial-array self refresh (PASR)
- Selectable output drive strength (DS)
- Clock Stop capability during idle period
- · RoHS-compliant, "green" packaging
- Programmable VSS (ODT) termination
- · Auto Refresh and Self Refresh Modes
- FBGA "green" package 200-ball VFBGA
- Operating temperature range : Single Low: -30°C to 85°C Commercial: 0°C to 85°C
- · Directed per-bank refresh for concurrent bank operation and ease of command scheduling
- VDD1/VDD2/VDDQ= 1.8V/1.1V/1.1V or 0.6V

Ordering Information

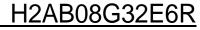
Part No	Organization	Max. Freq	Package	Grade
H2AB08G32E6RIAAC	512M X 32	LP DDR4-2400		Commercial
H2AB08G32E6RKAAC	512M X 32	LP DDR4-3200	200Ball	Commercial
H2AB08G32E6RIAASL	512M X 32	LP DDR4-2400	BGA,10x14.5mm	Single Low
H2AB08G32E6RKAASL	512M X 32	LP DDR4-3200		Single Low

Pin Assignment

	1	2	3	4	5
Α	DNU	DNU	V _{SS}	V _{DD2}	ZQ0
В	DNU	DQ0_A	V _{DDQ}	DQ7_A	V _{DDQ}
C	V _{SS}	DQ1_A	DMI0_A	DQ6_A	V _{SS}
D	V _{DDQ}	V _{SS}	DQS0_t_A	V _{SS}	V _{DDQ}
Ε	V _{SS}	DQ2_A	DQS0_c_A	DQ5_A	V _{SS}
F	V _{DD1}	DQ3_A	V _{DDQ}	DQ4_A	V _{DD2}
G	V _{SS}	ODT_CA_A	V _{SS}	V _{DD1}	V _{SS}
Н	V _{DD2}	CA0_A	NC	CS0_A	V _{DD2}
J	V _{SS}	CA1_A	V _{SS}	CKE0_A	NC
K	V _{DD2}	V _{SS}	V _{DD2}	V _{SS}	NC

8	9	10	11	12.
NC	V _{DD2}	V _{SS}	DNU	DNU
V _{DDQ}	DQ15_A	V _{DDQ}	DQ8_A	DNU
V _{SS}	DQ14_A	DMI1_A	DQ9_A	V _{SS}
V _{DDQ}	V _{SS}	DQS1_t_A	V _{SS}	V _{DDQ}
V _{SS}	DQ13_A	DQS1_c_A	DQ10_A	V _{SS}
V _{DD2}	DQ12_A	V _{DDQ}	DQ11_A	V _{DD1}
V _{SS}	V _{DD1}	V _{SS}	NC	V _{SS}
V _{DD2}	CA2_A	CA3_A	CA4_A	V _{DD2}
CK_t_A	CK_c_A	V _{SS}	CA5_A	V _{SS}
NC	V _{SS}	V _{DD2}	V _{SS}	V _{DD2}

Μ					
N	V _{DD2}	V _{SS}	V _{DD2}	V _{SS}	NC
Р	V _{SS}	CA1_B	V _{SS}	CKE0_B	NC
R	V _{DD2}	CA0_B	NC	CS0_B	V _{DD2}
Т	V _{SS}	ODT_CA_B	V _{SS}	V _{DD1}	V _{SS}
U	V _{DD1}	DQ3_B	V _{DDQ}	DQ4_B	V _{DD2}
٧	V _{SS}	DQ2_B	DQS0_c_B	DQ5_B	V _{SS}
W	V _{DDQ}	V _{SS}	DQS0_t_B	V _{SS}	V _{DDQ}
Υ	V _{SS}	DQ1_B	DMI0_B	DQ6_B	V _{SS}
٩A	DNU	DQ0_B	V _{DDQ}	DQ7_B	V _{DDQ}
AB	DNU	DNU	V _{SS}	V _{DD2}	V _{SS}
	1	2	3	4	5


NC	V _{SS}	V _{DD2}	V _{SS}	V _{DD2}
CK_t_B	CK_c_B	V _{SS}	CA5_B	V _{SS}
V _{DD2}	CA2_B	CA3_B	CA4_B	V _{DD2}
V _{SS}	V _{DD1}	V _{SS}	RESET_n	V _{SS}
V _{DD2}	DQ12_B	V _{DDQ}	DQ11_B	V _{DD1}
V _{SS}	DQ13_B	DQS1_c_B	DQ10_B	V _{SS}
V _{DDQ}	V _{SS}	DQS1_t_B	V _{SS}	V _{DDQ}
V _{SS}	DQ14_B	DMI1_B	DQ9_B	V _{SS}
V _{DDQ}	DQ15_B	V _{DDQ}	DQ8_B	DNU
V _{SS}	V _{DD2}	V _{SS}	DNU	DNU
8	9	10	11	12

Top View (ball down)

DDR4_A (Channel A) DDR4_B (Channel B) ZQ, ODT_CA, RESET Supply Ground

200-Ball FBGA

Pin Description (Simplified)

Symbol	Type	Description
		Clock: CK_t and CK_c are differential clock inputs. All address,
		command and control input signals are sampled on positive edge of CK_t
CK_t_A, CK_c_A, CK_t_B,	Input	and the negative edge of CK_c. AC
CK_c_B	p w/	timings for CA parameters are referenced to clock. Each channel (A, B)
		has its own clock pair.
		Clock enable: CKE HIGH activates and CKE LOW deactivates the
CKE0_A, CKE0_B	Input	internal clock signals, input buffers, and output drivers. Power-saving
CKEU_A, CKEU_B	IIIput	modes are entered and exited via CKE transitions. CKE is sampled at
		the rising edge of CK.
CS0_A, CS0_B	Input	Chip select: Each channel (A, B) has its own CS signals.
		Command/address inputs: Provide the command and address inputs
CA[5:0]_A, CA[5:0]_B	Input	according to the command truth table. Each channel (A, B) has its own
CA[J.0]_A, CA[J.0]_B	Input	CA signals.
		CA ODT Control: The ODT_CA pin is used in conjunction with the
		mode register to turn on/off the on-die termination for CA pins. It is
ODT_CA_A, ODT_CA_B	Toward	bonded to V_{DD2} within the package, or at the package ball, for the
ODI_CA_A, ODI_CA_B	Input	terminating rank, and the non-terminating ranks are bonded to V_{SS} (or
		left floating with a weak pull-down on the DRAM die). The terminating
		rank is the DRAM that terminates the CA bus for all die on the same
		channel.
DQ[15:0]_A, DQ[15:0]_B	I/O	Data input/output: Bidirectional data bus.
		Data strobe: DQS_t and DQS_c are bi-directional differential output
		clock signals used to strobe data during a READ or WRITE. The data
DQS[1:0]_t_A,DQS[1:0]_c_		strobe is generated by the DRAM for a READ and is edge-aligned with
A,		data. The data strobe is generated by the SoC memory controller for a
DQS[1:0]_t_B,DQS[1:0]_c_B		WRITE and is trained to precede data. Each byte of data has a data strobe
DQS[1.0]_C_D,DQS[1.0]_C_D		signal pair. Each channel (A, B) has its own DQS_t and DQS_c
		strobes.

		Data Mask/Data Bus Inversion: DMI is a dual use bi-directional signal
		used to indicate data to be masked, and data which is inverted on the bus.
		For data bus inversion
		(DBI), the DMI signal is driven HIGH when the data on the data bus is
DMI(1.0) A DMI(1.0) D	1/0	inverted, or driven LOW when the data is in its normal state. DBI can be
DMI[1:0]_A,DMI[1:0]_B	I/O	disabled via a mode register setting. For data mask, the DMI signal is
		used in combination with the data lines to indicate data to be masked in a
		MASK WRITE command (see the Data Mask (DM) and Data Bus
		Inversion (DBI) sections for details). The data mask function can be
		disabled via a mode register setting. Each byte of data has a DMI
		signal. Each channel has its Own DMI signals.
		ZQ Calibration Reference: Used to calibrate the output drive strength
ZQ0	Reference	and the termination resistance. There is one ZQ pin per die. The ZQ pin shall be connected to V_{DDQ} through a 240 Ω ±1% resistor.
$V_{DDQ}, V_{DD1}, V_{DD2}$	Supply	Power supplies: Isolated on the die for improved noise immunity.
$ m V_{SS}$	Supply	Ground Reference: Power supply ground reference.
RESET_n	Input	RESET: When asserted LOW, the RESET pin resets both channels of
KLSL1_II	Input	the die.
DNU	-	Do not use: Must be grounded or left floating.
NC	-	No connect: Not internally connected.

SDRAM Addressing

			256M32 (8Gb/Package)	
Die Configuration	Channel A, Rank	0	x16 mode x 1 die	
	Channel B, Rank	0	x16 mode x 1 die	
Die Addressing	Device density (p	per die)	4Gb	
	Device density (p	per channel)	4Gb	
	Configuration(p	er die)	32Mb x 16 DQ x 8 Banks	
	Number of cha	nnels (per die)	1	
	Number of ban	ks (per channel)	8	
	Array prefetch	(bits, per channel)	256	
	Number of rows	s (per channel)	32,768	
	Number of columboundaries)	umns (fetch	64	
	Page size (bytes)		2048	
	Channel density (bits per channel)		4,294,967,296	
	Total density (b	its per die)	4,294,967,296	
	Bank address	T	BA[2:0]	
		Row address	R[14:0]	
	x16 Column address		C[9:0]	
	Burst starting address boundary		64-bit	

Absolute Maximum Rating

Symbol	Item	Rating	Units
V_{IN}, V_{OUT}	Voltage on any ball relative to VSS	-0.4 ~ 1.5	V
V _{DD1}	VDD1 supply voltage relative to VSS	-0.4 ~ 2.1	V
V_{DD2}	VDD2 supply voltage relative to VSS	-0.4 ~ 1.5	V
V_{DDQ}	VDDQ supply voltage relative to VSS	-0.4 ~ 1.5	V
T _{STG}	Storage Temperature (plastic)	-55 ~ 125	°C

- **Note 1:** For information about relationships between power supplies, see the Voltage Ramp and Device Initialization section.
- **Note 2:** Storage temperature is the case surface temperature on the center/top side of the device. For measurement conditions, refer to the JESD51-2 standard.

Input / Output Capacitance

Symbol	Parameter	Min.	Max.	Units
C _{CK}	Input capacitance, CK_t and CK_c	0.5	0.9	pF
C _{DCK}	Input capacitance delta, CK_t and CK_c	0	0.09	pF
Cı	I Input capacitance, all other input-only pins	0.5	0.9	pF
C _{DI}	Input capacitance delta, all other input-only pins	-0.1	0.1	pF
C _{IO}	Input/output capacitance, DQ, DMI, DQS_t, DQS_c	0.7	1.3	pF
C _{DDQS}	Input/output capacitance delta, DQS_t, DQS_c	0	0.1	pF
C _{DIO}	Input/output capacitance delta, DQ, DMI	-0.1	0.1	pF
C _{ZQ}	Input/output capacitance, ZQ pin	0	5.0	pF

- **Note 1:** This parameter is not subject to production testing. It is verified by design and characterization.
- Note 2: This parameter is not subject to production test. It is verified. The capacitance is measured according to JEP147 (Procedure for measuring input capacitance using a vector network analyzer (VNA) with VDD1, VDD2, VDDQ, VSS, VSS, VSS applied and all other pins floating.
- Note 3: Absolute value of CKCK_t CKCK_c
- Note 4: CI applies to CS, CKE and CA[5:0].
- **Note 5:** CDI = CI $-0.5 \times (CCK_t + CKCK_c)$; it does not apply to CKE.
- Note 6: DMI loading matches DQ and DQS.
- **Note 7:** MR3 I/O configuration DS OP3-OP0 = 0001B (34.3 Ω typical).
- Note 8: Absolute value of CDQS_t and CDQS_c.
- Note 9: CDIO = CIO Average(CDQn, CDMI, CDQS_t, CDQS_c) in byte-lane

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Units
V_{DD1}	Core Supply voltage 1	1.70	1.80	1.95	V
V_{DD2}	Core Supply voltage 2	1.06	1.10	1.17	V
V_{DDQ}	I/O buffer power	0.57/1.06	0.6/1.1	0.65/1.17	V

- Notes: 1. VDD1 uses significantly less power than VDD2.
- **Notes: 2.** The voltage range is for DC voltage only. DC voltage is the voltage supplied at the DRAM and is inclusive of all noise up to 20 MHz at the DRAM package ball.
- **Notes: 3.** The voltage noise tolerance from DC to 20 MHz exceeding a peak-to-peak tolerance of 45mV at the DRAM ball is not included in the TdIVW.

IDD Specification Parameters and Operating Conditions

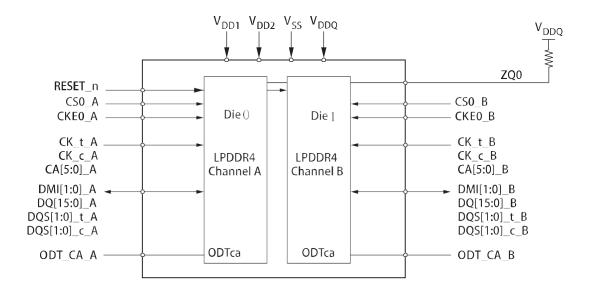
Parameter/Condition	Symbol	Power Supply	Current	Notes
Operating one bank active-precharge current:	IDD01	VDD1	TBD	
tCK=tCK(MIN);tRC=tRC(MIN); CKE is HIGH; CS is			TBD	
LOW between valid commands;CA bus inputs are	IDD02	VDD2		
switching; Data bus inputs are stable;ODT is disabled	IDD0Q	VDDQ	TBD	
Idle power-down standby current:tCK = tCK (MIN); CKE is	IDD2P1	VDD1	TBD	
LOW; CS is LOW; All banks are idle; CA bus inputs are	IDD2P2	VDD2	TBD	
switching;Data bus inputs are stable; ODT is disabled	IDD2PQ	VDDQ	TBD	
Idle power-down standby current with clock stop: CK_t	IDD2PS1	VDD1	TBD	
=LOW, CK_c = HIGH; CKE is LOW; CS is LOW; All	IDD2PS2	VDD2	TBD	
banks are idle; CA bus inputs are stable; Data bus inputs are stable; ODT is disabled	IDD2PSQ	VDDQ	TBD	

Parameter/Condition	Symbol	Power Supply	Current	Notes
Idle non-power-down standby current: tCK = tCK (MIN);	IDD2N1	VDD1	TBD	
CKE is HIGH; CS is LOW; All banks are idle; CA bus inputs	IDD2N2	VDD2	TBD	
are switching;Data bus inputs are stable; ODT is disabled	IDD2NQ	VDDQ	TBD	
Idle non-power-down standby current with clock	IDD2NS1	VDD1	TBD	
stopped:CK_t = LOW; CK_c = HIGH; CKE is HIGH; CS is	IDD2NS2	VDD2	TBD	
LOW; All banks are idle; CA bus inputs are stable; Data bus	IDD2NSQ	VDDQ	TBD	
inputs are stable; ODT is disabled				
Active power-down standby current: tCK = tCK (MIN);	IDD3P1	VDD1	TBD	
CKE is LOW; CS is LOW; One bank is active; CA bus	IDD3P2	VDD2	TBD	
inputs are switching;Data bus inputs are stable; ODT is	IDD3PQ	VDDQ	TBD	
disabled				
Active power-down standby current with clock stop: CK_t =	IDD3PS1	VDD1	TBD	
LOW, CK_c = HIGH; CKE is LOW; CS is LOW; One bank is active; CA bus inputs are stable; Data bus inputs are stable;	IDD3PS2	VDD2	TBD	
ODT is disabled	IDD3PSQ	VDDQ	TBD	

				<u> </u>
Active non-power-down standby current: tCK = tCK	IDD3N1	VDD1	TBD	
(MIN);CKE is HIGH; CS is LOW; One bank is active; CA	IDD3N2	VDD2	TBD	
bus inputs are switching; Data bus inputs are stable; ODT is	IDD3NQ	VDDQ	TBD	
disabled				
Active non-power-down standby current with clock stopped:	IDD3NS1	VDD1	TBD	
$CK_t = LOW$, $CK_c = HIGH$; CKE is $HIGH$; CS is LOW ;	IDD3NS2	VDD2	TBD	
One bank is active; CA bus inputs are stable; Data bus inputs	IDD3NSQ	VDDQ	TBD	
are stable; ODT is disabled				
Operating burst READ current: tCK = tCK (MIN); CS is	IDD4R1	VDD1	TBD	
LOW between	IDD4K1	VDDI		
valid commands; One bank is active; BL = 16 or 32; RL =	IDD4R2	VDD2	TBD	
RL(MIN);			TBD	
CA bus inputs are switching; 50% data change each	IDD4RQ	VDDQ	ТЫ	2,3
bursttransfer;				
ODT is disabled				
Operating burst WRITE current: tCK = tCK (MIN); CS is	IDD4W1	VDD1	TBD	
LOW between	IDD4W2	VDD2	TBD	
valid commands; One bank is active; BL = 16 or 32; WL = WL(MIN); CA bus inputs are switching; 50% data change	IDD4WQ	VDDQ	TBD	3
each burst transfer; ODT is disabled		,		

Parameter/Condition	Symbol	Power Supply	Current	Notes
All-bank REFRESH burst current: tCK = tCK (MIN); CKE	IDD51	VDD1	TBD	
is HIGHbetween valid commands; tRC = tRFCab (MIN);	IDD52	VDD2	TBD	
Burst refresh; CA bus inputs are switching; Data bus inputs	IDD5Q	VDDQ	TBD	
are stable; ODT is disabled				
All-bank REFRESH average current: tCK = tCK (MIN);	IDD5AB1	VDD1	TBD	
CKE is High between valid commands tRC = tREFI; CA bus	IDD5AB2	VDD2	TBD	
inputs are switching; Data bus inputs are stable; ODT is	IDD5ABQ	VDDQ	TBD	
disabled				
Per-bank REFRESH average current: tCK = tCK (MIN);	IDD5PB1	VDD1	TBD	
CKE is High between valid commands tRC = tREFI; CA bus	IDD5PB2	VDD2	TBD	

inputs are switching; Data bus inputs are stable; ODT is	IDD5PBQ	VDDQ	TBD	
disabled				
Power-down self refresh current: CK_t = LOW, CK_c =	IDD61	VDD1	TBD	
HIGH;CKE is LOW; CA bus inputs are stable; Data bus	IDD62	VDD2	TBD	
inputs are stable;Maximum 1x self refresh rate; ODT is	IDD6Q	VDDQ	TBD	
disabled(25℃)				


Notes:

- 1.Published IDD values except IDD4RQ are the maximum of the distribution of the arithmeticmean. Refer to the following note for IDD4RQ;
- 2.IDD4RQ value is reference only. Typical value. DBI disabled, VOH = VDDQ/3, TC = 25°C.
- 3.Measurement conditions of IDD4R and IDD4W values: DBI disabled, BL = 16.

Package Block Diagram - Dual-Die, Dual-Channel, Single Rank

Note:

1. ODT_CA for Rank 0 of each channel is wired to the respective ODT ball. DT_CA for Rank 1 of each channel is wired to VSS in the package.

Initialization Timing Parameters

Parameter	Min.	Max.	Unit	Comment			
tINIT0	1	20	ms	Maximum voltage ramp time			
tlNIT1	200	-	us	Minimum RESET_n LOW time after completion of voltage ramp			
tlNIT2	10	1	ns	Minimum CKE LOW time before RESET_n goes HIGH			
tINIT3	2	-	ms	Minimum CKE LOW time after RESET_n goes HIGH			
tlNIT4	5	-	tCK	Minimum stable clock before first CKE HIGH			
tINIT5	2	1	us	Minimum idle time before first MRW/MRR command			
tCKb	Note	1, 2	ns	Clock cycle time during boot			

Notes: 1. Minimum tCKb guaranteed by DRAM test is 18ns.

Notes: 2. The system may boot at a higher frequency than dictated by minimum tCKb. The higher boot frequency is system dependent.

AC Characteristics

Clock Timing

			Data Rate			
Danamatan	Complete	Min/	1600	2400	3200	Unit
Parameter	Symbol	Max	Mbps	Mbps	Mbps	Unit
		Min	1250	833	625	ps
Average clock period	^t CK(avg)	Max		100		ns
Average HIGH pulse		Min		0.46		
width	^t CH(avg)	Max		0.54		^t CK(avg)
		Min		0.46		
Average LOW pulse width	^t CL(avg)	Max		0.54		^t CK(avg)
			tCl	۲(avg)miı	า +	
Absolute clock period	tCK(abs)	Min	tJ	IIT(per)m	in	ps
Absolute clock HIGH		Min	0.43			
pulse width	^t CH(abs)	Max		0.57		^t CK(avg)
Absolute clock LOW pulse		Min		0.43		
width	tCL(abs)	Max		0.57		^t CK(avg)
	^t JIT(per)	Min	-70	TBD	-40	
Clock period jitter	allowed	Max	70	TBD	40	ps
Maximum clock jitter						
between two	^t JIT(cc)	max	140	TBD	80	ps
consecutiveclock cycles	allowed					I
(includes clockperiod jitter)						

Read Output Timing

			Data Rate				
		Min/	1600	240	3200		
Parameter	Symbol	Max	Mbps	Mb	ps Mbps	Unit	Notes
DQS output access time from		Min		1500)	-	
CK_t/CK_c	¹DQSCK	Max		3500)	ps	6,11
DQS output access time from CK_t/CK_c –voltage variation	'DQSCK_ VOLT	Max		7		ps/mV	6
DQS output access time from CK_t/CK_c- temperature variation	¹DQSCK_ TEMP	Max		4		ps°/C	6
CK to DQS rank to rank variation	^t DQSCK_ran k2rank	Max		1.0		ns	6,11
DQS_t, DQS_c to DQ skew total, per group, per access (DBI Disabled)	'DQSQ	Max	0.18			UI	9,11
DQ output hold time total from DQS_t, DQS_c (DBI Disabled)	tQH	Min		MIN(tQ	SH, tQSL)	ps	10,11
Data output valid window time total, per pin (DBI-Disabled)	^t QW_total	Min	0.75	0.73	0.7	UI	9,11
DQS_t, DQS_c to DQ skew total, per group, per access (DBI-Enabled)	'DQSQ_ DBI	Max	0.18		UI	10,11	
DQ output hold time total from DQS_t, DQS_c (DBI-Enabled)	'QH_DBI	Min	MIN('QSH_DBI, 'QSL_DBI)			ps	

	I		ПИВОВОЗИ				
				D	ata Rate		
		Min/	1600	2400	3200		
Parameter	Symbol	Max	Mbps	Mbps	Mbps	Unit	Notes
Data output valid window time total, per pin (DBI-Enabled)	'QW_total _DBI	Min	0.75	0.73	0.7	UI	
DQS_t, DQS_c differential output LOW time (DBI-Disabled)	'QSL	Min		^t CL(a	bs) – 0.05	^t CK(avg)	
DQS_t, DQS_c differential output HIGH time (DBI-Disabled)	'QSH	Min		¹CH(a	bs) – 0.05	^t CK(avg)	
DQS_t, DQS_c differential output LOW time (DBI-Enabled)	'QSL-DBI	Min		^t CL(abs) – 0.045			
DQS_t, DQS_c differential output HIGH time (DBI-Enabled)	¹QSH-DBI	Min		¹CH(ab	s) – 0.045	¹CK(avg)	
Read preamble	^t RPRE	Min		1.8		tCK(avg)	
Read postamble	^t RPST	Min	0.4		atra postamble is	tCK(avg)	
DQS Low-Z from clock	¹LZ(DQS)	Min	·		QSCK(Min)- ¹ CK) -200ps	ps	
DQ Low-Z from clock	^t LZ(DQ)	Min	(RL x ^t C	(RL x 'CK) +'DQSCK(Min) - 200ps		ps	
DQS High-Z from clock	¹HZ(DQS)	Min	(RL x 'CK) + 'DQSCK(Max)+(BL/2 x 'CK) + ('RPST(Max)xtCK) - 100ps			ps	
DQ High-Z from clock	'HZ(DQ)	Min		('RPST(Max)xtCK) - 100ps (RL x 'CK) + 'DQSCK(Max) + 'DQSQ(Max) + (BL/2 x tCK) -100ps			

Note:

- 1. This parameter includes DRAM process, voltage, and temperature variation. It also includes the AC noise impact for frequencies >20 MHz and a max voltage of 45mV peakto- peak from DC-20 MHz at a fixed temperature on the package. The voltage supply noise must comply with the component MIN/MAX DC operating conditions.
- tDQSCK_volt max delay variation as a function of DC voltage variation for VDDQ and VDD2. The voltage supply noise must comply with the component MIN/MAX DC operating conditions. The voltage variation is defined as the max[abs(tDQSCK(MIN)@V1- tDQSCK(MAX)@V2), ABS(tDQSCK(MAX)@V1-tDQSCK(MIN)@V2)]/ABS(V1-V2).
- 3. tDQSCK_temp MAX delay variation as a function of temperature.
- 4. The same voltage and temperature are applied to tDQSCK_rank2rank.
- 5. tDQSCK_rank2rank parameter is applied to multi-ranks per byte lane within a package consisting of the same design dies.
- 6. DQ-to-DQS differential jitter where the total includes the sum of deterministic and random timing terms for a specified BER.
- 7. The deterministic component of the total timing.
- 8. This parameter will be characterized and guaranteed by design.
- 9. tQSL describes the instantaneous differential output low pulse width on DQS_t DQS_c, as measured from one falling edge to the next consecutive rising edge.
- 10. tQSH describes the instantaneous differential output high pulse width on DQS_t DQS_c, as measured from one falling edge to the next consecutive rising edge.
- 11. This parameter is a function of input clock jitter. These values assume MIN tCH(ABS) and tCL(ABS). When the input clock jitter MIN tCH(ABS) and tCL(ABS) is 0.44 or greater than tCK(AVG), the MIN value of tQSL will be tCL(ABS) 0.04 and tQSH will be tCH(ABS) 0.04.

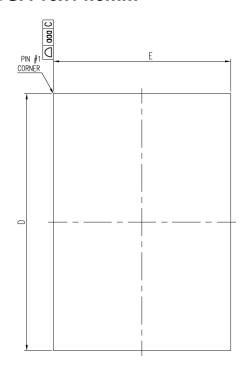
Write Timing

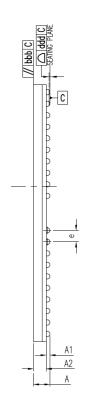
Note UI = tCK(AVG)(MIN)/2

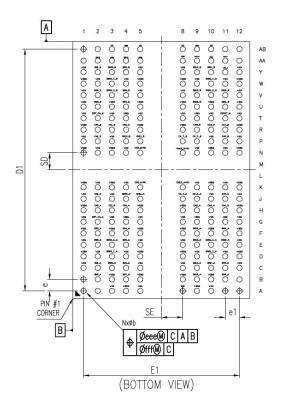
			[Data Rate)		
		Min/ Max	1600	2400	3200		
Parameter	Symbol		Mbps	Mbps	Mbps	Unit	Notes
Rx timing window total at							
VdIVW voltage levels	TdIVW_						
	total	Max	0.	22	0.25	UI	1,2,3
DQ and DMI input pulse	TdIPW	Min		0.45		UI	7
width (at Vcent_dQ)							
DQ-to-DQS offset		Min		200			
	^t DQS2DQ	Max		800		ps	6
DQ-to-DQ offset	^t DQDQ	Max		30		ps	7

DQ-to-DQS offset	tDQS2DQ	Max	0.6	ps/°C	8
emperature variation	_temp				
DQ-to-DQS offset voltage	+D003D0				
variation	tDQS2DQ _volt	Max	33	ps/50 mV	9
DQ-to-DQS offset rank to	tDQS2DQ_				
rank variation	rank2ra nk	Max	200	ps	10,11
WRITE command to first DQS		Min	0.75		
transition	^t DQSS	Max	1.25	tCK(av g)	
DQS input HIGH-level width	^t DQSH	-	0.4	tCK(avg)	
DQS input LOW-level width	^t DQSL	Min	0.4	tCK(avg)	
DQS falling edge to CK setup	^t DSS	Min	0.2	tCK(avg)	
DQS falling edge from CK hold time	^t DSH	Min	0.2	tCK(avg)	
Write postamble	^t WPST	Min	0.4	tCK(av g)	
Write preamble	^t WPRE	Min	1.8	tCK(avg)	

Note:


- 1. Data Rx mask voltage and timing parameters are applied per pin and include the DRAM DQ-to-DQS voltage AC noise impact for frequencies >20 MHz with a maximum voltage of 45mV peak-to-peak at a fixed temperature on the package. The voltage supply noise must comply to the component MIN/MAX DC operating conditions.
- 2. Rx differential DQ-to-DQS jitter total timing window at the VdIVW voltage levels.
- 3. Defined over the DQ internal VREF range. The Rx mask at the pin must be within the internal VREF(DQ) range irrespective of the input signal common mode.
- 4. Rx mask defined for one pin toggling with other DQ signals in a steady state.
- 5. DQ-only minimum input pulse width defined at the VCENT_DQ(pin_mid).
- 6. DQ-to-DQS offset is within byte from DRAM pin to DRAM internal latch. Includes all DRAM process, voltage, and temperature variations.
- 7. DQ-to-DQ offset defined within byte from DRAM pin to DRAM internal latch for a given component.
- 8. tDQS2DQ (MAX) delay variation as a function of temperature.
- 9. tDQS2DQ (MAX) delay variation as a function of the DC voltage variation for VDDQ and VDD2. It includes the VDDQ and VDD2 AC noise impact for frequencies >20 MHz and MAX voltage of 45mV peak-to-peak from DC-20 MHz at a fixed temperature on the package.
- 10. The same voltage and temperature are applied to tDQS2DQ rank2rank.
- 11. tDQS2DQ_rank2rank parameter is applied to multi-ranks per byte lane within a package consisting of the same design dies.





Package Description

200-ball FBGA 10x14.5mm

CVALDO	DIMENSION IN MM DIMENSIO			ISION	N IN	INCH	
SYMBOL	MIN.	NOM.	MAX.	MIN.	NC	M.	MAX.
Α	0.86	0.93	1.00	0.034	0.0	37	0.039
A1		0.21			0.0	800	
A2	0.66	0.72	0.78	0.026	0.0	28	0.031
р	0.25	0.30	0.35	0.010	0.0	12	0.014
D	14.40	14.50	14.60	0.567	0.5	571	0.575
E	9.90	10.00	10.10	0.390	0.394		0.398
е	C	.65 BS0).	0.	.026	BS	С.
e1	C	.80 BS0	D.	0.	.031	BS	С.
JEDEC		N	10-311(REF.)/MI	M		
aaa			0.	10			
bbb			0.	10			
ddd			0.	08			
eee	0.15						
fff		0.08					
N	SE (mr	n) SI) (mm)	E1 (mr	n)	D1	(mm)
200	1.20 BS	SC. 0.9	0.975 BSC. 8.80 BSC. 13.65			65 BSC.	

Revision History

Revision No.	History	Draft Date	Editor	Remark
0.1	Initial Release.	Feb. 2020	Rico Yang	N/A
1.0	First SPEC. release.	May. 2020	Rico Yang	N/A

