

## 1G-BIT 3.3V SPI-NAND FLASH MEMORY

#### Descriptions

The H7A41G24B6CG (1G-bit) Serial SLC NAND Flash Memory provides a storage solution for systems with limited space, pins and power. The H7A41G24B6CG incorporates the popular SPI interface and the traditional large NAND non-volatile memory space. They are ideal for code shadowing to RAM, executing code directly from Dual/Quad SPI (XIP) and storing voice, text and data. The device operates on a single 2.7V to 3.6V power supply with current consumption as low as 25mA active and 10µA for standby.

H7A41G24B6CG was offered in space-saving packages which were impossible to use in the past for the typical NAND flash memory. The H7A41G24B6CG 1G-bit memory array is organized into 65,536 programmable pages of 2,048-bytes each. The entire page can be programmed at one time using the data from the 2,048-Byte internal buffer. Pages can be erased in groups of 64 (128KB block erase).

The H7A41G24B6CG has 1,024 erasable blocks and supports – the standard Serial Peripheral Interface (SPI), Dual/Quad I/O • SPI: Serial Clock, Chip Select, Serial Data I/O0 (DI), I/O1 (DO),– I/O2 (/WP), and I/O3 (/HOLD). SPI clock frequencies of up to 104MHz are supported allowing equivalent clock rates of 208MHz (104MHz x 2) for Dual I/O and 416MHz (104MHz x 4) for Quad I/O when using the Fast Read Dual/Quad I/O instructions.The H7A41G24B6CG supports JEDEC standard manufacturer and device ID, one 2,048-Byte Unique ID page, • one 2,048-Byte parameter page and ten 2,048-Byte OTP pages. To provide better NAND flash memory manageability, user configurable internal ECC, bad block management are also available in H7A41G24B6CG.

#### Features

|   | Basic Features                                |
|---|-----------------------------------------------|
| _ | Density : 1Gbit / 128M-byte                   |
| _ | Standard SPI: CLK, /CS, DI, DO, /WP,/Hold     |
| _ | Dual SPI: CLK, /CS, IO0, IO1, /WP, /Hold      |
| _ | Quad SPI: CLK, /CS, IO0, IO1, IO2, IO3        |
| _ | Compatible SPI serial flash commands          |
|   | Highest Performance Serial NAND Flash         |
| _ |                                               |
| _ |                                               |
| _ | 50MB/S continuous data transfer rate          |
| _ | Fast Program/Erase performance                |
| _ | More than 100,000 erase/program cycles        |
| _ | More than 10-year data retention              |
|   | Low Power, Wide Temperature Range             |
| - | Single 2.7 to 3.6V supply                     |
| - | 25mA active, 10µA standby current             |
| - |                                               |
|   | Flexible Architecture with 128KB blocks       |
| - | <b>,</b>                                      |
| - | Flexible page data load methods               |
|   | Advanced Features                             |
| - |                                               |
| - |                                               |
| - | 5                                             |
| - |                                               |
|   | Power Supply Lock-Down and OTP protection     |
| _ | - 1                                           |
|   | Space Efficient Packaging                     |
| _ | 24-ball TFBGA 8x6-mm(6x4 ball array)          |
|   |                                               |
|   | Notes:                                        |
|   | 1. H7A41G24B6CG: Default BUF=1 after power up |
|   |                                               |

- 2. LUT stands for Look-Up Table.
- 3. OTP pages can only be programmed.





#### **Ordering Information**

| Part No      | Density          | Read Command Mode        | Package                     | Grade      |
|--------------|------------------|--------------------------|-----------------------------|------------|
| H7A41G24B6CG | 1G-bit/128M-byte | Buffer Read Mode (BUF=1) | 24-Ball<br>TFBGA 8x6mm(6x4) | Commercial |

#### Pad Configuration

| $\bigcirc$ |      |                            |               |               |
|------------|------|----------------------------|---------------|---------------|
|            | (A1) | (A2)                       | (A3)          | (A4)          |
|            | NC   | NC                         | NC            | NČ            |
|            | (B1) | (B2)                       | (B3)          | ( <b>B4</b> ) |
|            | NC   | CLK                        | GND           | VCC           |
|            | (C1) | (C2)                       | C3            | (C4)          |
|            | NC   | /CS                        | NC            | /WP (IO2)     |
|            | D1)  | (D2)                       | (D3)          | D4            |
|            | NC   | DO(IO1)                    |               | /HOLD(IO3)    |
|            | (Ē1) | (E2)                       | ( <b>E3</b> ) | (E4)          |
|            | NC   | NC                         | NC            | NC            |
|            | (F1) | $\langle \hat{F2} \rangle$ | (F3)          | (F4)          |
|            | NC   | NC                         | NC            | NC            |
|            |      |                            |               |               |

#### 24-ball TFBGA 8x6mm(6x4 array)

#### Pin Description (Simplified)

|          |             | 24-ball TFBGA,8 | x6mm (6x4 array)                          |
|----------|-------------|-----------------|-------------------------------------------|
| Ball NO. | PAD Name    | I/O             | Function                                  |
| B2       | CLK         | Input           | Serial Clock Input                        |
| B3       | GND         |                 | Ground                                    |
| B4       | VCC         |                 | Power Supply                              |
| C2       | /CS         | Input           | Chip Select Input                         |
| C4       | /WP (IO2)   | Input / Output  | Write Protect Input (Data Input Output 2) |
| D2       | DO (IO1)    | Input / Output  | Data Output (Data Input Output 1)         |
| D3       | DI (IO0)    | Input / Output  | Data Input (Data Input Output 0)          |
| D4       | /HOLD (IO3) | Input / Output  | Hold Input (Data Input Output 3)          |
| Multiple | NC          |                 | Not Connect                               |

Note1: IO0 and IO1 are used for Standard and Dual SPI instructions and IO0 – IO3 are used for Quad SPI instructions, /WP & /HOLD functions are only available for Standard/Dual SPI





#### Absolute Maximum Rating

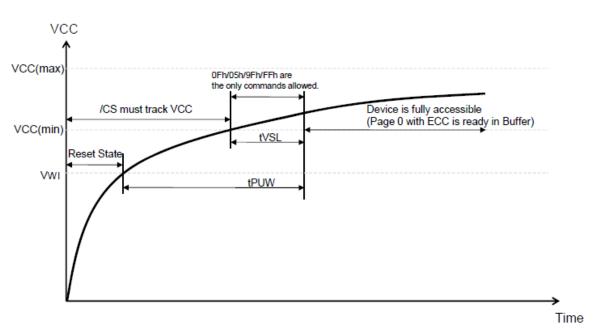
| ltem                            | Symbol            | Conditions                            | Rating                | Unit |
|---------------------------------|-------------------|---------------------------------------|-----------------------|------|
| Supply Voltage                  | V <sub>cc</sub>   |                                       | -0.6 ~ 4.6            | V    |
| Voltage Applied to Any Pin      | V <sub>IO</sub>   | Relative to Ground                    | -0.6 ~ 4.6            | V    |
| Transient Voltage on any Pin    | V <sub>IOT</sub>  | <20nS Transient<br>Relative to Ground | - 2.0V to<br>VCC+2.0V | V    |
| Short circuit output current    | I <sub>OS</sub>   |                                       | 5                     | mA   |
| Storage Temperature             | T <sub>STG</sub>  |                                       | -65 ~ 150             | °C   |
| Lead Temperature                | T <sub>LEAD</sub> |                                       | Notes2                | °C   |
| Electrostatic Discharge Voltage | V <sub>ESD</sub>  | Human Body Model(3)                   | - 2000 to +2000       | V    |

**Note 1:** This device has been designed and tested for the specified operation ranges. Proper operation outside of these levels is not guaranteed. Exposure to absolute maximum ratings may affect device reliability. Exposure beyond absolute maximum ratings may cause permanent damage.

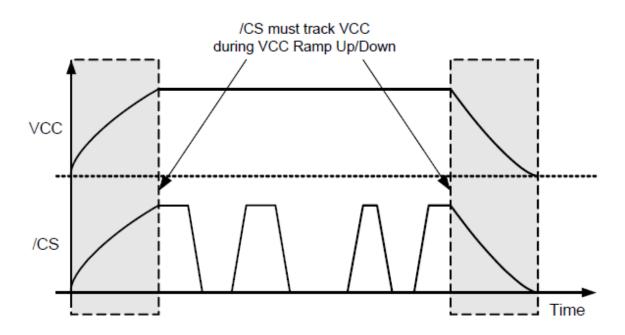
*Note 2:* Compliant with JEDEC Standard J-STD-20C for small body Sn-Pb or Pb-free (Green) assembly and the European directive on restrictions on hazardous substances (RoHS) 2002/95/EU.

Note 3: JEDEC Standard JESD22-A114A (C1=100pF, R1=1500 ohms, R2=500 ohms)..

#### **Operating Ranges**


| Parameter                      | Symbol | Conditions | Sp   | Unit |      |
|--------------------------------|--------|------------|------|------|------|
| Faiameter                      | Symbol | Conditions | Min. | Max. | Unit |
| Supply Voltage                 | Vcc    |            | 2.7  | 3.6  | V    |
| Ambient Temperature, Operating | Та     | Commercial | 0    | 70   | °C   |






#### Device Power-up / Power-down Timing Requirement

| Parameter                           | Symbol | Sp   | ec.  | Unit |
|-------------------------------------|--------|------|------|------|
| Farameter                           | Symbol | Min. | Max. | Onit |
| VCC (min) to /CS Low                | tVSL   | 50   | 500  | us   |
| Time Delay Before Write Instruction | tPUW   | 5    |      | ms   |
| Write Inhibit Threshold Voltage     | Vwi    | 1.0  | 2.0  | V    |



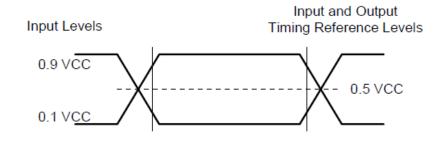
Power-up Timing and Voltage Levels



Power-up, Power-Down Requirement






#### **DC Characteristics**

| Devementere          | Cumb al | Conditions                         |           | Spec. |           | 11::4 |
|----------------------|---------|------------------------------------|-----------|-------|-----------|-------|
| Parameters           | Symbol  | Conditions                         | MIN       | TYP   | Max       | Unit  |
| Input Capacitance    | CIN(1)  | VIN=0V(1)                          |           |       | 6         | pF    |
| Output Capacitance   | COUT(1) | VOUT=0V(1)                         |           |       | 8         | pF    |
| Input Leakage        | ILI     |                                    |           |       | +/-2      | uA    |
| I/O Leakage          | ILO     |                                    |           |       | +/-2      | uA    |
| Standby Current      | ICC1    | /CS = VCC,<br>VIN = GND or VCC     |           | 10    | 50        | uA    |
| Read Current         | ICC2    | C = 0.1 VCC / 0.9 VCC<br>DO = Open |           | 25    | 35        | mA    |
| Current Page Program | ICC3    | /CS = VCC                          |           | 25    | 35        | mA    |
| Current Block Erase  | ICC4    | /CS = VCC                          |           | 25    | 35        | mA    |
| Input Low Voltage    | VIL     |                                    |           |       | 0.3 x Vcc | V     |
| Input High Voltage   | VIH     |                                    | 0.7 x Vcc |       |           | V     |
| Output Low Voltage   | VOL     | IOL=2.1mA                          |           |       | 0.4       | V     |
| Output High Voltage  | VOH     | IOH = -400 μA                      | 2.4       |       |           | V     |

*Note 1:* Tested on sample basis and specified through design and characterization data. TA = 25° C, VCC = 3.0V.

#### **AC Measurement Conditions**

| Baramatar                        | Symbol | Sp         | ec.                | l Init |  |  |
|----------------------------------|--------|------------|--------------------|--------|--|--|
| Parameter                        | Symbol | MIN        | Max                | Unit   |  |  |
| Load Capacitance                 | CL     |            | 30                 | pF     |  |  |
| Input Rise and Fall Times        | TR,TF  |            | 5                  | ns     |  |  |
| Input Pulse Voltages             | VIN    | 0.1 VCC to | o 0.9 VCC          | V      |  |  |
| Input Timing Reference Voltages  | IN     | 0.3 VCC to | 0.3 VCC to 0.7 VCC |        |  |  |
| Output Timing Reference Voltages | OUT    | 0.5 \      | VCC                | V      |  |  |



AC Measurement I/O Waveform



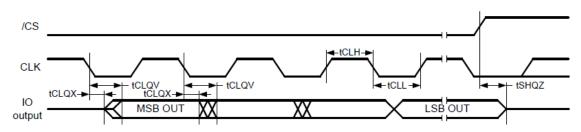


### AC Electrical Characteristics

|                                                                                                   | • • •        |      |      | Spec. |          |       |
|---------------------------------------------------------------------------------------------------|--------------|------|------|-------|----------|-------|
| Description                                                                                       | Symbol       | ALT  | MIN  | ТҮР   | Max      | Unit  |
| Clock frequency for all instructions                                                              | FR           | fC1  | D.C. |       | 104      | Mhz   |
| Clock High, Low Time for all instructions                                                         | tCLH,tCLL(1) |      | 4    |       |          | ns    |
| Clock Rise Time peak to peak                                                                      | tCLCH(2)     |      | 0.1  |       |          | V/ns  |
| Clock Fall Time peak to peak                                                                      | tCHCL(2)     |      | 0.1  |       |          | V/ns  |
| /CS Active Setup Time relative to CLK                                                             | tSLCH        | tCSS | 5    |       |          | ns    |
| /CS Not Active Hold Time relative to CLK                                                          | tCHSL        |      | 5    |       |          | ns    |
| Data In Setup Time                                                                                | tDVCH        | tDSU | 2    |       |          | ns    |
| Data In Hold Time                                                                                 | tCHDX        | tDH  | 3    |       |          | ns    |
| /CS Active Hold Time relative to CLK                                                              | tCHSH        |      | 3    |       |          | ns    |
| /CS Not Active Setup Time relative to CLK                                                         | tSHCH        |      | 3    |       |          | ns    |
| /CS Deselect Time (for Array Read $\rightarrow$ Array Read)                                       | tSHSL1       | tCSH | 10   |       |          | ns    |
| /CS Deselect Time (for Erase, Program or Read<br>Status Registers → Read Status Registers)        | tSHSL2       | tCSH | 50   |       |          | ns    |
| Output Disable Time                                                                               | tSHQZ(2)     | tDIS |      |       | 7        | ns    |
| Clock Low to Output Valid                                                                         | tCLQV        | tV   |      |       | 7        | ns    |
| Output Hold Time                                                                                  | tCLQX        | tHO  | 2    |       |          | ns    |
| /HOLD Active Setup Time relative to CLK                                                           | tHLCH        |      | 5    |       |          | ns    |
| /HOLD Active Hold Time relative to CLK                                                            | tCHHH        |      | 5    |       |          | ns    |
| /HOLD Not Active Setup Time relative to CLK                                                       | tHHCH        |      | 5    |       |          | ns    |
| /HOLD Not Active Hold Time relative to CLK                                                        | tCHHL        |      | 5    |       |          | ns    |
| /HOLD to Output Low-Z                                                                             | tHHQX(2)     | tLZ  |      |       | 7        | ns    |
| /HOLD to Output High-Z                                                                            | tHLQZ(2)     | tHZ  |      |       | 12       | ns    |
| Write Protect Setup Time Before /CS Low                                                           | tWHSL        |      | 20   |       |          | ns    |
| Write Protect Hold Time After /CS High                                                            | tSHWL        |      | 100  |       |          | ns    |
| Status Register Write Time                                                                        | tw           |      |      |       | 50       | ns    |
| /CS High to next Instruction after Reset during<br>Page Data Read / Program Execute / Block Erase | tRST(2)      |      |      |       | 5/10/100 | us    |
| Read Page Data Time (ECC disabled)                                                                | tRD1         |      |      |       | 25       | us    |
| Read Page Data Time (ECC enabled)                                                                 | tRD2         |      |      |       | 60       | us    |
| Page Program, OTP Lock, BBM Management Time                                                       | tPP          |      |      | 250   | 700      | us    |
| Block Erase Time                                                                                  | tBE          |      |      | 2     | 10       | ms    |
| Number of partial page programs                                                                   | NoP          |      |      |       | 4        | times |

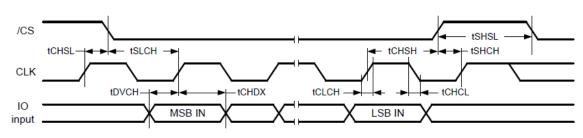
*Note: 1.* Clock high + Clock low must be less than or equal to 1/fC.

Note: 2. Value guaranteed by design and/or characterization, not 100% tested in production.

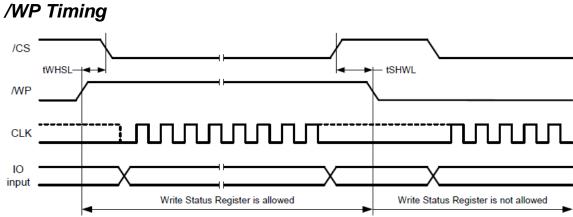

*Note:* 3. Tested on sample basis and specified through design and characterization data. TA = 25° C, VCC = 3.0V.






# H7A41G24B6CG

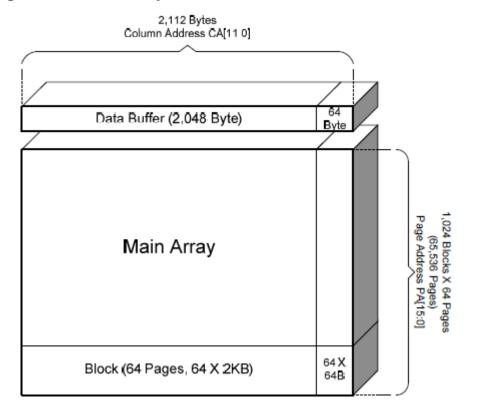
#### Serial Output Timing



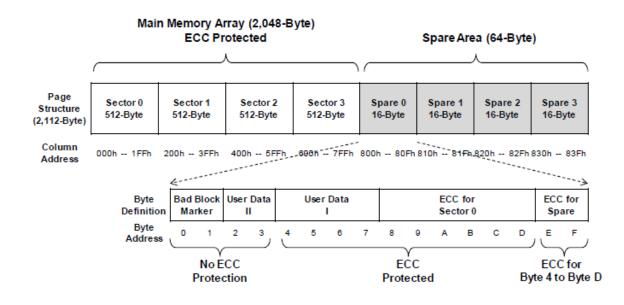

#### Serial Input Timing

/Hold Timing




#### /CS tHLCH tCHHL - tHHCH CLK tCHHH /HOLD tHLQZ -tHHQX 10 output 10 input

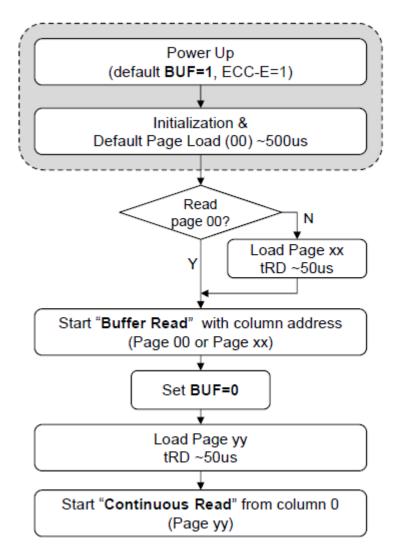







#### Block Diagram and Memory Architecture




| Address Bits              | 31 | 30                             | 29 | 28 | 27 | 26 2                                 | 5 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17                     | 16                       | 15   | 14 | 13  | 12                         | 11                        | 10   | 9                         | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 |
|---------------------------|----|--------------------------------|----|----|----|--------------------------------------|------|----|----|----|----|----|----|------------------------|--------------------------|------|----|-----|----------------------------|---------------------------|------|---------------------------|---|---|---|---|---|---|---|-----|
| SpiFlash (up to 128M-Bit) | Х  | Х                              | Х  | х  | х  | X X X X 64KB Block Addr (256 Blocks) |      |    |    |    |    |    |    |                        | Page Address (256 Pages) |      |    |     |                            |                           | )    | Byte Address (0-255 Byte) |   |   |   |   |   |   |   |     |
| SpiFlash (up to 32G-Bit)  |    | 64KB Block Address Page Addres |    |    |    |                                      |      |    |    |    |    |    |    | dress                  | ess (256 Pages)          |      |    |     |                            | Byte Address (0-255 Byte) |      |                           |   |   |   |   |   |   |   |     |
|                           | Х  | Х                              | Х  | Х  |    | Page Address (PA) [15:0]             |      |    |    |    |    |    |    |                        |                          | Colu |    |     |                            |                           | olun | mn Address (CA) [11:0]    |   |   |   |   |   |   |   |     |
| Serial NAND (1G-Bit)      | Х  | х                              | х  | х  |    | 128KB Block Addr (1024 Blocks) Page  |      |    |    |    |    |    |    | ge Addr (64 Pages) Ext |                          |      |    | Byt | Byte Address (0-2047 Byte) |                           |      |                           |   |   |   |   |   |   |   |     |







#### **Device Operation Flow**



#### Standard SPI Instructions

The H7A41G24B6CG is accessed through an SPI compatible bus consisting of four signals: Serial Clock (CLK), Chip Select (/CS), Serial Data Input (DI) and Serial Data Output (DO). Standard SPI instructions use the DI input pin to serially write instructions, addresses or data to the device on the rising edge of CLK. The DO output pin is used to read data or status from the device on the falling edge of CLK.

SPI bus operation Mode 0 (0,0) and 3 (1,1) are supported. The primary difference between Mode 0 and Mode 3 concerns the normal state of the CLK signal when the SPI bus master is in standby and data is not being transferred to the Serial Flash. For Mode 0, the CLK signal is normally low on the falling and rising edges of /CS. For Mode 3, the CLK signal is normally high on the falling and rising edges of /CS.

#### **Dual SPI Instructions**

The H7A41G24B6CG supports Dual SPI operation when using instructions such as "Fast Read Dual Output (3Bh)" and "Fast Read Dual I/O (BBh)". These instructions allow data to be transferred to or from the device at two to three times the rate of ordinary Serial Flash devices. The Dual SPI Read instructions are ideal for quickly downloading code to RAM upon power-up (code-shadowing) or for executing non-speed-critical code directly from the SPI bus (XIP). When using Dual SPI instructions, the DI and DO pins become bidirectional I/O pins: IO0 and IO1.





#### **Quad SPI Instructions**

The H7A41G24B6CG supports Quad SPI operation when using instructions such as "Fast Read Quad Output (6Bh)", "Fast Read Quad I/O (EBh)" and "Quad Program Data Load (32h/34h)". These instructions allow data to be transferred to or from the device four to six times the rate of ordinary Serial Flash. The Quad Read instructions offer a significant improvement in continuous and random access transfer rates allowing fast code-shadowing to RAM or execution directly from the SPI bus (XIP). When using Quad SPI instructions the DI and DO pins become bidirectional IO0 and IO1, and the /WP and /HOLD pins become IO2 and IO3 respectively.

#### Hold Function

For Standard SPI and Dual SPI operations, the /HOLD signal allows the H7A41G24B6CG operation to be paused while it is actively selected (when /CS is low). The /HOLD function may be useful in cases where the SPI data and clock signals are shared with other devices. For example, consider if the page buffer was only partially written when a priority interrupt requires use of the SPI bus. In this case the /HOLD function can save the state of the instruction and the data in the buffer so programming can resume where it left off once the bus is available again. The /HOLD function is only available for standard SPI and Dual SPI operation, not during Quad SPI. When a Quad SPI command is issued, /HOLD pin will act as a dedicated IO pin (IO3).

To initiate a /HOLD condition, the device must be selected with /CS low. A /HOLD condition will activate on the falling edge of the /HOLD signal if the CLK signal is already low. If the CLK is not already low the /HOLD condition will activate after the next falling edge of CLK. The /HOLD condition will terminate on the rising edge of the /HOLD signal if the CLK signal is already low. If the CLK is not already low the /HOLD condition will terminate after the next falling edge of CLK. The /HOLD condition will terminate on the rising edge of the /HOLD signal if the CLK signal is already low. If the CLK is not already low the /HOLD condition will terminate after the next falling edge of CLK. During a /HOLD condition, the Serial Data Output (DO) is high impedance, and Serial Data Input (DI) and Serial Clock (CLK) are ignored. The Chip Select (/CS) signal should be kept active (low) for the full duration of the /HOLD operation to avoid resetting the internal logic state of the device.

#### Write Protection

Applications that use non-volatile memory must take into consideration the possibility of noise and other adverse system conditions that may compromise data integrity. To address this concern, the H7A41G24B6CG provides several means to protect the data from inadvertent writes.

- Device resets when VCC is below threshold
- Write enable/disable instructions and automatic write disable after erase or program
- Software and Hardware (/WP pin) write protection using Protection Register (SR-1)
- Lock Down write protection for Protection Register (SR-1) until the next power-up
- One Time Program (OTP) write protection for memory array using Protection Register (SR-1)
- ♦ Hardware write protection using /WP pin when WP-E is set to 1

Upon power-up or at power-down, the H7A41G24B6CG will maintain a reset condition while VCC is below the threshold value of VWI. While reset, all operations are disabled and no instructions are recognized. During power-up and after the VCC voltage exceeds VWI, all program and erase related instructions are further disabled for a time delay of tPUW. This includes the Write Enable, Program Execute, Block Erase and the Write Status Register instructions. Note that the chip select pin (/CS) must track the VCC supply level at power-up until the VCC-min level and tVSL time delay is reached, and it must also track the VCC supply level at power-down to prevent adverse command sequence. If needed a pull-up resister on /CS can be used to accomplish this.





# H7A41G24B6CG

After power-up the device is automatically placed in a write-disabled state with the Status Register Write Enable Latch (WEL) set to a 0. A Write Enable instruction must be issued before a Program Execute or Block Erase instruction will be accepted. After completing a program or erase instruction the Write Enable Latch (WEL) is automatically cleared to a write-disabled state of 0.

Software controlled write protection is facilitated using the Write Status Register instruction and setting the Status Register Protect (SRP0, SRP1) and Block Protect (TB, BP[3:0]) bits. These settings allow a portion or the entire memory array to be configured as read only. Used in conjunction with the Write Protect (/WP) pin, changes to the Status Register can be enabled or disabled under hardware control. See Protection Register section for further information.

The WP-E bit in Protection Register (SR-1) is used to enable the hardware protection. When WP-E is set to 1, bringing /WP low in the system will block any Write/Program/Erase command to the H7A41G24B6CG,the device will become read-only. The Quad SPI operations are also disabled when WP-E is set to 1.

#### Protection, Configuration and Status Registers

Three Status Registers are provided for H7A41G24B6CG: Protection Register (SR-1), Configuration Register (SR-2) & Status Register (SR-3). Each register is accessed by Read Status Register and Write Status Register commands combined with 1-Byte Register Address respectively.

The Read Status Register instruction (05h / 0Fh) can be used to provide status on the availability of the flash memory array, whether the device is write enabled or disabled, the state of write protection, Read modes, Protection Register/OTP area lock status, Erase/Program results, ECC usage/status. The Write Status Register instruction can be used to configure the device write protection features, Software/Hardware write protection, Read modes, enable/disable ECC, Protection Register/OTP area lock. Write access to the Status Register is controlled by the state of the non-volatile Status Register Protect bits (SRP0, SRP1), the Write Enable instruction, and when WP-E is set to 1, the /WP pin.

#### Protection Register / Status Register-1 (Volatile Writable, OTP lockable)

|                                                            | S7   | S6  | S5  | S4  | S3  | S2 | S1   | S0   |
|------------------------------------------------------------|------|-----|-----|-----|-----|----|------|------|
|                                                            | SRP0 | BP3 | BP2 | BP1 | BP0 | тв | WP-E | SRP1 |
| Status Register Protect-0<br>(Volatile Writable, OTP Lock) |      | Т   |     | T   |     |    |      | Υ.   |
| Block Protect Bits<br>(Volatile Writable, OTP Lock)        |      |     |     |     |     |    |      |      |
| Top/Bottom Protect Bit<br>(Volatile Writable, OTP Lock)    |      |     |     |     |     |    |      |      |
| /WP Enable Bit<br>(Volatile Writable, OTP Lock)            |      |     |     |     |     |    |      |      |
| Status Register Protect-1<br>(Volatile Writable, OTP Lock) |      |     |     |     |     |    |      |      |





#### Block Protect Bits – Volatile Writable, OTP lockable

The Block Protect bits (BP3, BP2, BP1, BP0 & TB) are volatile read/write bits in the status register-1 (S6, S5, S4, S3 & S2) that provide Write Protection control and status. Block Protect bits can be set using the Write Status Register Instruction. All, none or a portion of the memory array can be protected from Program and Erase instructions. The default values for the Block Protection bits are 1 after power up to protect the entire array. If the SR1-L bit in the Configuration Register (SR-2) is set to 1, the default values will the values that are OTP locked.

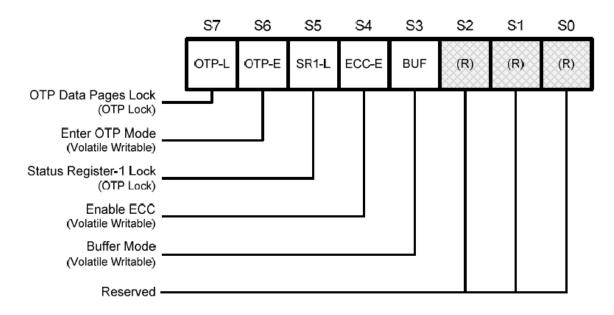
#### Write Protection Enable Bit – Volatile Writable, OTP lockable

The Write Protection Enable bit (WP-E) is a volatile read/write bits in the status register-1 (S1). The WP-E bit, in conjunction with SRP1 & SRP0, controls the method of write protection: software protection, hardware protection, power supply lock-down or one time programmable (OTP) protection, /WP pin functionality, and Quad SPI operation enable/disable. When WP-E = 0 (default value), the device is in Software Protection mode, /WP & /HOLD pins are multiplexed as IO pins, and Quad program/read functions are enabled all the time. When WP-E is set to 1, the device is in Hardware Protection mode, all Quad functions are disabled and /WP & /HOLD pins become dedicated control input pins.

#### Status Register Protect Bits – Volatile Writable, OTP lockable

The Status Register Protect bits (SRP1 and SRP0) are volatile read/write bits in the status register (S0 and S7). The SRP bits control the method of write protection: software protection, hardware protection, power supply lock-down or one time programmable (OTP) protection.

|      | Software Protection (Driven by Controller, Quad Program/Read is enabled) |      |          |                                                                                                          |  |  |  |  |  |
|------|--------------------------------------------------------------------------|------|----------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| SRP1 | SRP0                                                                     | WP-E | /WP /IO2 | Descriptions                                                                                             |  |  |  |  |  |
| 0    | 0                                                                        | 0    | x        | No /WP functionality /WP pin will always function as IO2                                                 |  |  |  |  |  |
| 0    | 1                                                                        | 0    | 0        | SR-1 cannot be changed (/WP = 0 during Write Status)<br>/WP pin will function as IO2 for Quad operations |  |  |  |  |  |
| 0    | 1                                                                        | 0    | 1        | SR-1 can be changed (/WP = 1 during Write Status)<br>/WP pin will function as IO2 for Quad operations    |  |  |  |  |  |
| 1    | 0                                                                        | 0    | х        | Power Lock Down(1) SR-1<br>/WP pin will always function as IO2                                           |  |  |  |  |  |
| 1    | 1                                                                        | 0    | x        | Enter OTP mode to protect SR-1 (allow SR1-L=1)<br>/WP pin will always function as IO2                    |  |  |  |  |  |


| Ha   | Hardware Protection (System Circuit / PCB layout, Quad Program/Read is disabled) |      |          |                                                                                                     |  |  |  |  |  |
|------|----------------------------------------------------------------------------------|------|----------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| SRP1 | SRP0                                                                             | WP-E | /WP only | Descriptions                                                                                        |  |  |  |  |  |
| 0    | Х                                                                                | 1    | VCC      | SR-1 can be changed                                                                                 |  |  |  |  |  |
| 1    | 0                                                                                | 1    | VCC      | Power Lock-Down(1) SR-1                                                                             |  |  |  |  |  |
| 1    | 1                                                                                | 1    | VCC      | Enter OTP mode to protect SR-1 (allow SR1-L=1)                                                      |  |  |  |  |  |
| Х    | х                                                                                | 1    | GND      | All "Write/Program/Erase" commands are blocked<br>Entire device (SRs, Array, OTP area) is read-only |  |  |  |  |  |

*Note: 1.* When SRP1, SRP0 = (1, 0), a power-down, power-up cycle will change SRP1, SRP0 to (0, 0) state.





#### Configuration Register / Status Register-2 (Volatile Writable)



#### One Time Program Lock Bit (OTP-L) – OTP lockable

In addition to the main memory array, H7A41G24B6CG also provides an OTP area for the system to store critical data that cannot be changed once it's locked. The OTP area consists of 10 pages of 2,112-Byte each. The default data in the OTP area are FFh. Only Program command can be issued to the OTP area to change the data from "1" to "0", and data is not reversible ("0" to "1") by the Erase command. Once the correct data is programmed in and verified, the system developer can set OTP-L bit to 1, so that the entire OTP area will be locked to prevent further alteration to the data.

#### Enter OTP Access Mode Bit (OTP-E) – Volatile Writable

The OTP-E bit must be set to 1 in order to use the standard Program/Read commands to access the OTP area as well as to read the Unique ID / Parameter Page information. The default value after power up or a RESET command is 0.

#### Status Register-1 Lock Bit (SR1-L) – OTP lockable

The SR1-L lock bit is used to OTP lock the values in the Protection Register (SR-1). Depending on the settings in the SR-1, the device can be configured to have a portion of or up to the entire array to be write-protected, and the setting can be OTP locked by setting SR1-L bit to 1. SR1-L bit can only be set to 1 permanently when SRP1 & SRP0 are set to (1,1), and OTP Access Mode must be entered (OTP-E=1) to execute the programming.

#### ECC Enable Bit (ECC-E) – Volatile Writable

H7A41G24B6CG has a built-in ECC algorithm that can be used to preserve the data integrity. Internal ECC calculation is done during page programming, and the result is stored in the extra 64-Byte area for each page. During the data read operation, ECC engine will verify the data values according to the previously stored ECC information and to make necessary corrections if needed. The verification and correction status is indicated by the ECC Status Bits. ECC function is enabled by default when power on (ECC-E=1), and it will not be reset to 0 by the Device Reset command.



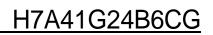


#### Buffer Read / Continuous Read Mode Bit (BUF) – Volatile Writable

H7A41G24B6C provides two different modes for read operations, Buffer Read Mode (BUF=1) and Continuous Read Mode (BUF=0). Prior to any Read operation, a Page Data Read command is needed to initiate the data transfer from a specified page in the memory array to the Data Buffer. By default, after power up, the data in page 0 will be automatically loaded into the Data Buffer and the device is ready to accept any read commands.

The Buffer Read Mode (BUF=1) requires a Column Address to start outputting the existing data inside the Data Buffer, and once it reaches the end of the data buffer (Byte 2,111), DO (IO1) pin will become high-Z state.

The Continuous Read Mode (BUF=0) doesn't require the starting Column Address. The device will always start output the data from the first column (Byte 0) of the Data buffer, and once the end of the data buffer (Byte 2,048) is reached, the data output will continue through the next memory page. With Continuous Read Mode, it is possible to read out the entire memory array using a single read command. Please refer to respective command descriptions for the dummy cycle requirements for each read commands under different read modes.


For H7A41G24B6CG part number, the default value of BUF bit after power up is 1. BUF bit can be written to 0 in the Status Register-2 to perform the Continuous Read operation.

| BUF | ECC-E | Read Mode<br>(Starting from Buffer) | ECC Status     | Data Output Structure |
|-----|-------|-------------------------------------|----------------|-----------------------|
| 1   | 0     | Buffer Read                         | N/A            | 2048 + 64             |
| 1   | 1     | Buffer Read                         | Page base      | 2048 +64              |
| 0   | 0     | Continuous Read                     | N/A            | 2048                  |
| 0   | 1     | Continuous Read                     | Operation base | 2048                  |

#### Status Register-3 (Status Only)

|                                        | \$7 | S6             | S5    | S4    | S3              | S2     | S1  | S0   |
|----------------------------------------|-----|----------------|-------|-------|-----------------|--------|-----|------|
|                                        | (R) | LUT <b>-</b> F | ECC-1 | ECC-0 | P <b>-</b> FAIL | E-FAIL | WEL | BUSY |
| Reserved -                             |     |                |       |       |                 |        |     |      |
| BBM LUT Full<br>(Status Only)          |     |                |       |       |                 |        |     |      |
| ECC Status Bit[1:0]<br>(Status-Only)   |     |                |       |       |                 |        |     |      |
| Program Failure<br>(Status-Only)       |     |                |       |       |                 |        |     |      |
| Erase Failure<br>(Status-Only)         |     |                |       |       |                 |        |     |      |
| Write Enable Latch<br>(Status-Only)    |     |                |       |       |                 |        |     |      |
| Operation In Progress<br>(Status-Only) |     |                |       |       |                 |        |     |      |







## Look-Up Table Full (LUT-F) – Status Only

To facilitate the NAND flash memory bad block management, the H7A41G24B6CG is equipped with an internal Bad Block Management Look-Up-Table (BBM LUT). Up to 20 bad memory blocks may be replaced by a good memory block respectively. The addresses of the blocks are stored in the internal Look-Up Table as Logical Block Address (LBA, the bad block) & Physical Block Address (PBA, the good block). The LUT-F bit indicates whether the 20 memory block links have been fully utilized or not. The default value of LUT-F is 0, once all 20 links are used, LUT-F will become 1, and no more memory block links may be established.

## Cumulative ECC Status (ECC-1, ECC-0) – Status Only

ECC function is used in NAND flash memory to correct limited memory errors during read operations. The ECC Status Bits (ECC-1, ECC-0) should be checked after the completion of a Read operation to verify the data integrity. The ECC Status bits values are don't care if ECC-E=0. These bits will be cleared to 0 after a power cycle or a RESET command.

| ECC-1 | ECC-0 | Descriptions                                                                                                                                                                                                                                                                                 |
|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0     | Entire data output is successful, without any ECC correction.                                                                                                                                                                                                                                |
| 0     | 1     | Entire data output is successful, with 1~4 bit/page ECC corrections in either a single page or multiple pages.                                                                                                                                                                               |
| 1     | 0     | Entire data output contains more than 4 bits errors only in a single page which cannot be repaired by ECC. In the Continuous Read Mode, an additional command can be used to read out the Page Address (PA) which had the errors.                                                            |
| 1     | 1     | Entire data output contains more than 4 bits errors/page in multiple pages. In the<br>Continuous Read Mode, the additional command can only provide the last Page<br>Address (PA) that had failures, the user cannot obtain the PAs for other failure<br>pages. Data is not suitable to use. |

*Note: 1.* ECC-1,ECC-0 = (1,1) is only applicable during Continuous Read operation (BUF=0).

#### Program/Erase Failure (P-FAIL, E-FAIL) – Status Only

The Program/Erase Failure Bits are used to indicate whether the internally-controlled Program/Erase operation was executed successfully or not. These bits will also be set respectively when the Program or Erase command is issued to a locked or protected memory array or OTP area. Both bits will be cleared at the beginning of the Program Execute or Block Erase instructions as well as the device RESET instruction.

#### Erase/Program In Progress (BUSY) – Status Only

BUSY is a read only bit in the status register (S0) that is set to a 1 state when the device is powering up or executing a Page Data Read, BBM Management, Program Execute, Block Erase, Program Execute for OTP area, OTP Locking or after a Continuous Read instruction. During this time the device will ignore further instructions except for the Read Status Register and Read JEDEC ID instructions. When the program, erase or write status register instruction has completed, the BUSY bit will be cleared to a 0 state indicating the device is ready for further instructions.

#### Write Enable Latch (WEL) – Status Only

WEL is a read only bit in status register (S1) that is set to 1 after executing a Write Enable Instruction. WEL status bit is cleared to 0 when device is write disabled. A write disable state occurs upon power-up or after any of the following instructions: Write Disable, Program Execute, Block Erase, Page Data Read and Program Execute for OTP pages.





#### Status Register Memory Protection

| STATUS REGISTER |     |     |     |     | (1G-BIT / 128M-BYTE) MEMORY PROTECTION |                  |           |             |  |  |
|-----------------|-----|-----|-----|-----|----------------------------------------|------------------|-----------|-------------|--|--|
| тв              | BP3 | BP2 | BP1 | BP0 | PROTECTED                              | PROTECTED PAGE   | PROTECTED | PROTECTED   |  |  |
|                 | Вго |     |     |     | BLOCK(S)                               | ADDRESS PA[15:0] | DENSITY   | PORTION     |  |  |
| Х               | 0   | 0   | 0   | 0   | None                                   | None             | None      | None        |  |  |
| 0               | 0   | 0   | 0   | 1   | 1022 &1023                             | FF80h - FFFFh    | 256KB     | Upper 1/512 |  |  |
| 0               | 0   | 0   | 1   | 0   | 1020 ~ 1023                            | FF00h - FFFFh    | 512KB     | Upper 1/256 |  |  |
| 0               | 0   | 0   | 1   | 1   | 1016 ~ 1023                            | FE00h - FFFFh    | 1MB       | Upper 1/128 |  |  |
| 0               | 0   | 1   | 0   | 0   | 1008 ~ 1023                            | FC00h - FFFFh    | 2MB       | Upper 1/64  |  |  |
| 0               | 0   | 1   | 0   | 1   | 992 ~ 1023                             | F800h - FFFFh    | 4MB       | Upper 1/32  |  |  |
| 0               | 0   | 1   | 1   | 0   | 960 ~ 1023                             | F000h - FFFFh    | 8MB       | Upper 1/16  |  |  |
| 0               | 0   | 1   | 1   | 1   | 896 ~ 1023 E000h - FFFFh               |                  | 16MB      | Upper 1/8   |  |  |
| 0               | 1   | 0   | 0   | 0   | 768 ~ 1023                             | C000h - FFFFh    | 32MB      | Upper 1/4   |  |  |
| 0               | 1   | 0   | 0   | 1   | 512 ~ 1023                             | 8000h - FFFFh    | 64MB      | Upper 1/2   |  |  |
| 1               | 0   | 0   | 0   | 1   | 0&1                                    | 0000h – 007Fh    | 256KB     | Lower 1/512 |  |  |
| 1               | 0   | 0   | 1   | 0   | 0 ~ 3                                  | 0000h - 00FFh    | 512KB     | Lower 1/256 |  |  |
| 1               | 0   | 0   | 1   | 1   | 0 ~ 7                                  | 0000h - 01FFh    | 1MB       | Lower 1/128 |  |  |
| 1               | 0   | 1   | 0   | 0   | 0 ~ 15                                 | 0000h - 03FFh    | 2MB       | Lower 1/64  |  |  |
| 1               | 0   | 1   | 0   | 1   | 0 ~ 31                                 | 0000h - 07FFh    | 4MB       | Lower 1/32  |  |  |
| 1               | 0   | 1   | 1   | 0   | 0 ~ 63                                 | 0000h - 0FFFh    | 8MB       | Lower 1/16  |  |  |
| 1               | 0   | 1   | 1   | 1   | 0 ~ 127                                | 0000h - 1FFFh    | 16MB      | Lower 1/8   |  |  |
| 1               | 1   | 0   | 0   | 0   | 0 ~ 255                                | 0000h - 3FFFh    | 32MB      | Lower 1/4   |  |  |
| 1               | 1   | 0   | 0   | 1   | 0 ~ 511                                | 0000h - 7FFFh    | 64MB      | Lower 1/2   |  |  |
| Х               | 1   | 0   | 1   | Х   | 0 ~ 1023                               | 0000h - FFFFh    | 128MB     | ALL         |  |  |
| Х               | 1   | 1   | Х   | Х   | 0 ~ 1023                               | 0000h - FFFFh    | 128MB     | ALL         |  |  |

*Note: 1.* X = don't care.

*Note:* **2.** If any Erase or Program command specifies a memory region that contains protected data portion, this command will be ignored.





# Understand H7A41G24B6CG Command Set Table(Buffer Read, BUF = 1, xxCG Default Power Up Mode)

| Commands                                     | OpCode    | Byte2        | Byte3         | Byte4         | Byte5         | Byte6         | Byte7         | Byte8         | Byte9         |
|----------------------------------------------|-----------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Device RESET                                 | FFh       |              |               |               |               |               |               |               |               |
| JEDEC ID                                     | 9Fh       | Dummy        | <u>EFh</u>    | <u>AAh</u>    | <u>21h</u>    |               |               |               |               |
| Read Status Register                         | 0Fh / 05h | SR<br>Addr   | <u>S7-0</u>   | <u> 87-0</u>  |
| Write Status Register                        | 1Fh / 01h | SR<br>Addr   | S7-0          |               |               |               |               |               |               |
| Write Enable                                 | 06h       |              |               |               |               |               |               |               |               |
| Write Disable                                | 04h       |              |               |               |               |               |               |               |               |
| BB Management<br>(Swap Blocks)               | A1h       | LBA          | LBA           | PBA           | PBA           |               |               |               |               |
| Read BBM LUT                                 | A5h       | Dummy        | LBA0          | <u>LBA0</u>   | PBA0          | <u>PBA0</u>   | <u>LBA1</u>   | <u>LBA1</u>   | PBA1          |
| Last ECC failure<br>Page Address             | A9h       | Dummy        | <u>PA15-8</u> | <u>PA7-0</u>  |               |               |               |               |               |
| Block Erase                                  | D8h       | Dummy        | PA15-8        | PA7-0         |               |               |               |               |               |
| Program Data Load<br>(Reset Buffer)          | 02h       | CA15-8       | CA7-0         | Data-0        | Data-1        | Data-2        | Data-3        | Data-4        | Data-5        |
| Random Program<br>Data Load                  | 84h       | CA15-8       | CA7-0         | Data-0        | Data-1        | Data-2        | Data-3        | Data-4        | Data-5        |
| Quad Program Data<br>Load (Reset Buffer)     | 32h       | CA15-8       | CA7-0         | Data-0<br>/ 4 | Data-1<br>/ 4 | Data-2<br>/ 4 | Data-3<br>/ 4 | Data-4<br>/ 4 | Data-5<br>/ 4 |
| Random Quad Program<br>Data Load             | 34h       | CA15-8       | CA7-0         | Data-0<br>/ 4 | Data-1<br>/ 4 | Data-2<br>/ 4 | Data-3<br>/ 4 | Data-4<br>/ 4 | Data-5<br>/ 4 |
| Program Execute                              | 10h       | Dummy        | PA15-8        | PA7-0         |               |               |               |               |               |
| Page Data Read                               | 13h       | Dummy        | PA15-8        | PA7-0         |               |               |               |               |               |
| Read                                         | 03h       | CA15-8       | CA7-0         | Dummy         | <u>D7-0</u>   | <u>D7-0</u>   | <u>D7-0</u>   | <u>D7-0</u>   | <u>D7-0</u>   |
| Fast Read                                    | 0Bh       | CA15-8       | CA7-0         | Dummy         | <u>D7-0</u>   | <u>D7-0</u>   | <u>D7-0</u>   | <u>D7-0</u>   | <u>D7-0</u>   |
| Fast Read<br>with 4-Byte Address             | 0Ch       | CA15-8       | CA7-0         | Dummy         | Dummy         | Dummy         | <u>D7-0</u>   | <u>D7-0</u>   | <u>D7-0</u>   |
| Fast Read Dual Output                        | 3Bh       | CA15-8       | CA7-0         | Dummy         | <u>D7-0/2</u> | <u>D7-0/2</u> | <u>D7-0/2</u> | <u>D7-0/2</u> | <u>D7-0/2</u> |
| Fast Read Dual Output<br>with 4-Byte Address | 3Ch       | CA15-8       | CA7-0         | Dummy         | Dummy         | Dummy         | <u>D7-0/2</u> | <u>D7-0/2</u> | <u>D7-0/2</u> |
| Fast Read Quad Output                        | 6Bh       | CA15-8       | CA7-0         | Dummy         | <u>D7-0/4</u> | <u>D7-0/4</u> | <u>D7-0/4</u> | <u>D7-0/4</u> | <u>D7-0/4</u> |
| Fast Read Quad Output<br>with 4-Byte Address | 6Ch       | CA15-8       | CA7-0         | Dummy         | Dummy         | Dummy         | <u>D7-0/4</u> | <u>D7-0/4</u> | <u>D7-0/4</u> |
| Fast Read Dual I/O                           | BBh       | CA15-8/<br>2 | CA7-0/<br>2   | Dummy<br>/2   | <u>D7-0/2</u> | <u>D7-0/2</u> | <u>D7-0/2</u> | <u>D7-0/2</u> | <u>D7-0/2</u> |
| Fast Read Dual I/O with 4-Byte Address       | BCh       | CA15-8/<br>2 | CA7-0/<br>2   | Dummy<br>/2   | Dummy<br>/2   | Dummy<br>/2   | <u>D7-0/2</u> | <u>D7-0/2</u> | <u>D7-0/2</u> |
| Fast Read Quad I/O                           | EBh       | CA15-8/<br>4 | CA7-0/<br>4   | Dummy<br>/4   | Dummy<br>/4   | <u>D7-0/4</u> | <u>D7-0/4</u> | <u>D7-0/4</u> | <u>D7-0/4</u> |
| Fast Read Quad I/O with 4-Byte Address       | ECh       | CA15-8/<br>4 | CA7-0/<br>4   | Dummy<br>/4   | Dummy<br>/4   | Dummy<br>/4   | Dummy<br>/4   | Dummy<br>/4   | <u>D7-0/4</u> |





Note 1: Output designates data output from the device. Note 2: Column Address (CA) only requires CA[11:0], CA[15:12] are considered as dummy bits. Note 3: Page Address (PA) requires 16 bits. PA[15:6] is the address for 128KB blocks (total 1,024 blocks), PA[5:0] is the address for 2KB pages (total 64 pages for each block). Note 4: Logical and Physical Block Address (LBA & PBA) each consists of 16 bits. LBA[9:0] & PBA[9:0] are effective Block Addresses. LBA[15:14] is used for additional information. Note 5: Status Register Addresses: Status Register 1 / Protection Register: Addr = Axh Status Register 2 / Configuration Register: Addr = Bxh Status Register 3 / Status Register: Addr = Cxh Note 6: Dual SPI Address Input (CA15-8 / 2 and CA7-0 / 2) format: IO0 = x, x, CA10, CA8, CA6, CA4, CA2, CA0 IO1 = x, x, CA11, CA9, CA7, CA5, CA3, CA1 Note 7: Dual SPI Data Output (D7-0 / 2) format: IO0 = D6, D4, D2, D0, ..... IO1 = D7, D5, D3, D1, ..... Note 8: Quad SPI Address Input (CA15-8 / 4 and CA7-0 / 4) format: IO0 = x, CA8, CA4, CA0IO1 = x, CA9, CA5, CA1IO2 = x, CA10, CA6, CA2 IO3 = x, CA11, CA7, CA3 Note 9: Quad SPI Data Input/Output (D7-0 / 4) format: IO0 = D4, D0, ..... IO1 = D5, D1, ..... IO2 = D6, D2, .....

IO3 = D7, D3, .....

Note 10: All Quad Program/Read commands are disabled when WP-E bit is set to 1 in the Protection Register.

**Note 11:** For all Read operations in the Buffer Read Mode, as soon as /CS signal is brought to high to terminate the read operation, the device will be ready to accept new instructions and all the data inside the Data Buffer will remain unchanged from the previous Page Data Read instruction.





#### Accessing Unique ID / Parameter / OTP Pages (OTP-E=1)

In addition to the main memory array, the H7A41G24B6CG is also equipped with one Unique ID Page, one Parameter Page, and ten OTP Pages.

| Page Address | Page Name       | Descriptions                  | Data Length  |
|--------------|-----------------|-------------------------------|--------------|
| 00h          | Unique ID Page  | Factory programmed, Read Only | 32-Byte x 16 |
| 01h          | Parameter Page  | Factory programmed, Read Only | 256-Byte x 3 |
| 02h          | OTP Page [0]    | Program Only, OTP lockable    | 2,112-Byte   |
|              | OTP Pages [1:8] | Program Only, OTP lockable    | 2,112-Byte   |
| 0Bh          | OTP Page [9]    | Program Only, OTP lockable    | 2,112-Byte   |

To access these additional data pages, the OTP-E bit in Status Register-2 must be set to "1" first. Then, Read operations can be performed on Unique ID and Parameter Pages, Read and Program operations can be performed on the OTP pages if it's not already locked. To return to the main memory array operation, OTP-E bit needs to be to set to 0.

#### **Read Operations**

A "Page Data Read" command must be issued followed by a specific page address shown in the table above to load the page data into the main Data Buffer. After the device finishes the data loading (BUSY=0), all Read commands may be used to read the Data Buffer starting from any specified Column Address. Please note all Read commands must now follow the "Buffer Read Mode" command structure (CA[15:0], number of dummy clocks) regardless the previous BUF bit setting. ECC can also be enabled for the OTP page read operations to ensure the data integrity.

#### Program and OTP Lock Operations

OTP pages provide the additional space (2K-Byte x 10) to store important data or security information that can be locked to prevent further modification in the field. These OTP pages are in an erased state set in the factory, and can only be programmed (change data from "1" to "0") until being locked by OTP-L bit in the Configuration/Status Register-2. OTP-E must be first set to "1" to enable the access to these OTP pages, then the program data must be loaded into the main Data Buffer using any "Program Data Load" commands. The "Program Execute" command followed by a specific OTP Page Address is used to initiate the data transfer from the Data Buffer to the OTP page. When ECC is enabled, ECC calculation will be performed during "Program Execute", and the ECC information will be stored into the 64-Byte spare area.

Once the OTP pages are correctly programmed, OTP-L bit can be used to permanently lock these pages so that no further modification is possible. While still in the "OTP Access Mode" (OTP-E=1), user needs to set OTP-L bit in the Configuration/Status Register-2 to "1", and issue a "Program Execute" command without any Page Address. After the device finishes the OTP lock setting (BUSY=0), the user can set OTPE to "0" to return to the main memory array operation.

#### SR1-L OTP Lock Operation

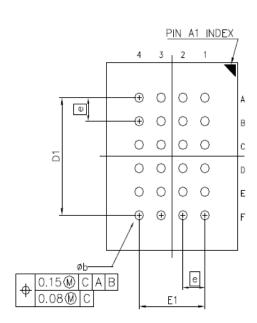
The Protection/Status Register-1 contains protection bits that can be set to protect either a portion or the entire memory array from being Programmed/Erased or set the device to either Software Write Protection (WP-E=0) or Hardware Write Protection (WP-E=1). Once the BP[3:0], TB, WP-E bits are set correctly, SRP1 and SRP0 should also be set to "1"s as well to allow SR1-L bit being set to "1" to permanently lock the protection settings in the Status Register-1 (SR1). Similar to the OTP-L setting procedure above, in order to set SR1-L lock bit, the device must enter the "OTP Access Mode" (OTP-E=1) first, and SR1-L bit should be set to "1" prior to the "Program Execute" command without any Page Address. Once SR1-L is set to "1" (BUSY=0), the user can set OTP-E to "0" to return to the main memory array operation.

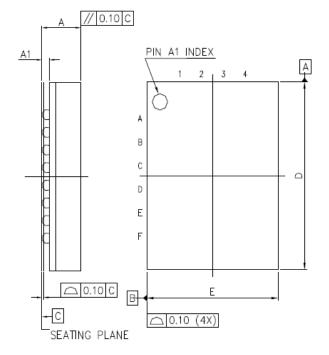


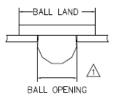


# H7A41G24B6CG

#### Parameter Page Data Definitions


| Byte Number | Descriptions                                   | Values                                                                                       |
|-------------|------------------------------------------------|----------------------------------------------------------------------------------------------|
| 0~3         | Parameter page signature                       | 4Fh, 4Eh, 46h, 49h                                                                           |
| 4~5         | Revision number                                | 00h, 00h                                                                                     |
| 6~7         | Feature supported                              | 00h, 00h                                                                                     |
| 8~9         | Optional command supported                     | 02h, 00h                                                                                     |
| 10~31       | Reserved                                       | All 00h                                                                                      |
| 32~43       | Device manufacturer                            | 57h, 49h, 4Eh, 42h, 4Fh, 4Eh, 44h, 20h, 20h, 20h, 20h, 20h                                   |
| 44~63       | Device model                                   | 57h, 32h, 35h, 4Eh, 30h, 31h, 47h, 56h, 20h, 20h,<br>20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, |
| 64          | JEDEC manufacturer ID                          | EFh                                                                                          |
| 65~66       | Date code                                      | 00h, 00h                                                                                     |
| 67~79       | Reserved                                       | All 00h                                                                                      |
| 80~83       | Number of data bytes per page                  | 00h, 08h, 00h, 00h                                                                           |
| 84~85       | Number of spare bytes per page                 | 40h, 00h                                                                                     |
| 86~91       | Reserved                                       | All 00h                                                                                      |
| 92~95       | Number of pages per block                      | 40h, 00h, 00h, 00h                                                                           |
| 96~99       | Number of blocks per logical unit              | 00h, 04h, 00h, 00h                                                                           |
| 100         | Number of logical units                        | 01h                                                                                          |
| 101         | Number of address bytes                        | 00h                                                                                          |
| 102         | Number of bits per cell                        | 01h                                                                                          |
| 103~104     | Bad blocks maximum per unit                    | 14h, 00h                                                                                     |
| 105~106     | Block endurance                                | 01h, 06h                                                                                     |
| 107         | Guaranteed valid blocks at beginning of target | 01h                                                                                          |
| 108~109     | Block endurance for guaranteed valid blocks    | 00h, 00h                                                                                     |
| 110         | Number of programs per page                    | 04h                                                                                          |
| 111         | Reserved                                       | 00h                                                                                          |
| 112         | Number of ECC bits                             | 00h                                                                                          |
| 113         | Number of plane address bits                   | 00h                                                                                          |
| 114         | Multi-plane operation attributes               | 00h                                                                                          |
| 115~127     | Reserved                                       | All 00h                                                                                      |
| 128         | I/O pin capacitance, maximum                   | 08h                                                                                          |
| 129~132     | Reserved                                       | All 00h                                                                                      |
| 133~134     | Maximum page program time<br>(us)              | BCh, 02h                                                                                     |
| 135~136     | Maximum block erase time (us)                  | 10h, 27h                                                                                     |
| 137~138     | Maximum page read time (us)                    | 32h, 00h                                                                                     |
| 139~163     | Reserved                                       | All 00h                                                                                      |
| 164~165     | Vendor specific revision number                | 00h, 00h                                                                                     |
| 166~253     | Vendor specific                                | All 00h                                                                                      |
| 254~255     | Integrity CRC                                  | Set at test                                                                                  |
| 256~511     | Value of bytes 0~255                           |                                                                                              |
| 512~767     | Value of bytes 0~255                           |                                                                                              |
| 768+        | Reserved                                       |                                                                                              |




Package Description

#### 24-Ball TFBGA 8x6mm(6x4 ball array)







Note: Ball land: 0.45mm. Ball Opening: 0.35mm PCB ball land suggested <= 0.35mm

| Symbol |      | Millimeters |      | Inches    |           |       |  |
|--------|------|-------------|------|-----------|-----------|-------|--|
| Symbol | Min  | Nom         | Max  | Min       | Nom       | Max   |  |
| A      |      |             | 1.20 |           |           | 0.047 |  |
| A1     | 0.25 | 0.30        | 0.35 | 0.010     | 0.012     | 0.014 |  |
| b      | 0.35 | 0.40        | 0.45 | 0.014     | 0.016     | 0.018 |  |
| D      | 7.95 | 8.00        | 8.05 | 0.313     | 0.315     | 0.317 |  |
| D1     |      | 5.00 BSC    |      | 0.197 BSC |           |       |  |
| E      | 5.95 | 6.00        | 6.05 | 0.234     | 0.236     | 0.238 |  |
| E1     |      | 3.00 BSC    |      | 0.118 BSC |           |       |  |
| е      |      | 1.00 BSC    |      |           | 0.039 BSC |       |  |





### **Revision History**

| Revision No. | History              | Draft Date | Editor    | Remark |
|--------------|----------------------|------------|-----------|--------|
| 0.1          | Initial Release.     | Sep. 2017  | Maven Hsu | N/A    |
| 1.0          | First SPEC. Release. | Sep. 2017  | Maven Hsu | N/A    |

